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Abstract

A pricing restriction is developed to test the validity of the CAPM conditional on a prior
belief about the correlation between the true market return and the proxy return used in the
test. Distinguishing this pricing restriction from competing tests also based upon the relative
ef�ciency of the proxy return is a consideration for the proxy's mismeasurement of the market
return. Failure to account for this mismeasurement biases tests of the CAPM towards rejection
by overstating the inef�ciency of the proxy. A time-varying version of this pricing restriction
links mismeasurement of the market return to time-variation in beta.
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1. Introduction
A common feature among many asset pricing models in �nancial economics is the relation

of expected returns on risky securities to the covariance between those securities' returns and an
economic aggregate like (the marginal utility of) aggregate wealth or consumption. In empirical
work, this economic aggregate (central to the pricing model under consideration) is generally un-
observable and requires a proxy. Tests of the given model which, by necessity, are based on the
proxy are confronted by a joint hypothesis that complicates the interpretation of a rejection of the
model's prediction. In particular, does this rejection signal a violation of the model's result or the
poor quality of the proxy chosen to render the model "testable"? In speci�c regard to the capital
asset pricing model (CAPM), the existence of this dual hypothesis led Roll (1977) to conclude that
the "theory is not testable unless the exact composition of the true market portfolio is known and
used in the tests" (p. 130).
Roll's critique was met by two possible ways forward. First, since validity of the CAPM and

mean-variance ef�ciency of the market return are equivalent, if the proxy is not mean-variance
ef�cient, then any "test" based on this proxy seems besides the point. This stance led to the devel-
opment of tests for mean-variance ef�ciency of a proxy, with Gibbons, Ross, and Shanken (1989)
serving as the prominent example and MacKinlay and Richardson (1991) providing a useful gen-
eralization. Second, if the proxy is invalid (i.e., not mean-variance ef�cient), then the CAPM
prediction based on this proxy should not be expected to hold exactly, only approximately. From
this stance, bounds on the deviations from exact CAPM pricing were developed based upon the rel-
ative ef�ciency of the proxy (i.e., its distance inside the minimum-variance boundary). Examples
of this approach include Shanken (1987) as well as Kandel and Stambaugh (1987, 1995).
This paper extends the literature on relative ef�ciency testing by developing a pricing restriction

that re�ects the way in which (1) a proxy return relates to the market return and (2) individual
security returns relate to the proxy. The �rst relation is addressed in the works of Shanken (1987)
and Kandel and Stambaugh (1987). The second is the principal contribution of this paper. A
general outline of the approach is as follows. The measure of relative ef�ciency is the correlation
between the proxy return and the market return denoted by �. A prior belief on the true value of
� is denoted by �o. A value for � is computed as the upper bound to a multivariate statistic of
CAPM pricing errors measured against the proxy. If this value is less than �o, such is interpreted
as evidence against the CAPM. This approach is a conditional test of the CAPM based upon a prior
belief about the relative ef�ciency of the proxy. If the proxy is determined to be too far inside the
minimum-variance boundary, the market return is concluded to also be inef�cient.
Conditional on the market return being mean-variance ef�cient, a test of relative ef�ciency as-

sumes that, to some extent, the proxy return mismeasures the market return. A common starting
point for most relative ef�ciency tests is the assumption that the relationship between security re-
turns (or portfolios of these returns) and the proxy return can be explained by a projection of the
former onto the latter. Suppose that mismeasurement of the market return by the proxy return is
taken to mean that certain components relevant to the market return are excluded from the proxy.
Then, the extent to which these excluded components are correlated with the proxy return will de-
termine the extent to which innovations to a linear equation describing security returns conditional
on the proxy return will tend to covary with that proxy return, since those innovations will contain
the aforementioned omitted components. In other words, mismeasurement renders the proxy re-
turn endogenous in a linear equation relating security returns to the proxy. The resulting structural
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equation will differ from a projection equation. This paper shows that relative ef�ciency tests based
upon projections are biased towards rejecting the CAPM because these tests overstate a proxy's
distance away from the minimum-variance boundary. Mismeasurement of the market return is the
source of this bias.
A relative ef�ciency test based upon the aforementioned structural equation as opposed to the

commonly used OLS projection requires a consistent estimator for the former in order to render the
test feasible empirically. Towards that end, a novel estimator for linear equations with an endoge-
nous regressor proposed by Prono (2008) is utilized. This estimator relies upon the conditional
heteroskedasticity of security returns by basing identi�cation on exclusionary restrictions within
the functional form describing that heteroskedasticity. As such, this estimator is a higher-moment
analog to common instrumental variables techniques. MacKinlay and Richardson (1991) demon-
strate that heteroskedasticity in market model residuals can meaningfully impact the results of
mean variance ef�ciency tests for a given proxy return. This paper extends their �ndings to tests of
relative ef�ciency noting, however, that a particular form of heteroskedasticity can be used to de-
scribe not only the second moment patterns of market model residuals, but also the co-movement
of these residuals with the proxy return caused by the latter's mismeasurement of the market return
(MacKinlay and Richardson (1991), among others, assume this co-movement to be zero).
The remainder of this paper is organized as follows. Starting from a rather general pricing

model, Section 2 develops a pricing restriction that can be used to test the CAPM conditional on
a prior belief about the correlation between the market return and the proxy used in the test. This
restriction fully encompasses the difference between the market return and an imperfect proxy.
Section 3 reviews conventional tests of relative mean-variance ef�ciency. Section 4 presents an
overview of the econometrics used to identify and estimate the structural equation describing se-
curity returns in terms of the proxy return. Section 5 details a method for conducting a test of
relative mean-variance ef�ciency that is based upon the econometric techniques developed in sec-
tion 4. Section 6 summarizes the results from employing this test, comparing them to the results
obtained from the conventional methods reviewed in section 3. Section 7 presents the results of
a Monte Carlo study of the test proposed in section 5 against conventional alternatives. Section 8
proposes a generalization of the pricing restriction in section 2 that provides a direct link between
mismeasurement of the market return and time-variation in beta. Section 9 concludes.

2. Pricing Restriction
Assume there exists an observable risk-free rate. Let rt be an N -vector of excess security re-

turns, rpt a scalar proxy to the unobservable excess market return rmt, and let the resulting N + 1
components be linearly independent. Finally, de�ne mt as a scalar unobservable economic aggre-
gate. Potential examples of mt include (the marginal utility of) aggregate wealth or consumption.
Consider the following pricing model

E [rt] = Cov [mt; rt] (1)

that relates expected excess returns to the covariance between excess returns and the economic
aggregate. Many pricing models in �nancial economics can be characterized in terms of (1). For
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instance, suppose

mt =

�
E [rmt]

�2 [rmt]

�
rmt: (2)

Then (1) and (2) imply
E [rt] = �E [rmt]

where
� =

Cov [rmt; rt]

�2 [rmt]

which is the familiar CAPM of Sharpe (1964) and Lintner (1965). Alternatively, replacing rmt in
(2) with rct, the excess return on a security (or portfolio of securities) that is perfectly correlated
with changes in aggregate consumption, renders (1) and (2) the CCAPM of Breeden (1979). More
generally, if mt can be decomposed into a set of K orthogonal factors where the ith factor fit is

weighted by E[fit]
�2[fit]

, then (1) expresses a multi-beta factor model in the spirit of Ross (1976) and
Sharpe (1977). For the purpose of this paper, however, interest is focused on proportionality of the
economic aggregate to the market return as given by (2).
The model of (1) and (2) can be expressed as a linear multivariate regression

rt = �+ �rmt + et (3)

where E [etrmt] = 0 and � = 0. Suppose that

rmt = rpt + �t; (4)

which is related to (17) in Jagannathan and Wang (1996) and casts the relationship between the
market return and proxy return as a form of measurement error.3 In addition, (4) is a close coun-
terpart to the decomposition of a proxy return used to develop the CAPM for inef�cient portfolios
(CAPMI) in Diacogiannis and Feldman (2006). Differences between (4) and the CAPMI are (1)
�t is not assumed to be uncorrelated with rmt and (2) the expected values of rpt and rmt are not,
necessarily, equal. The variable �t re�ects components to the market return that are excluded from
the proxy return. Examples of these components include returns to nontraded assets and/or the
returns to human capital.4 Substitution of (4) into (3) produces

rt = 
 + �rpt + eet (5)

where


 = �+ �E [�t] ; � = � (6)eet = �e�t + et;
e�t = �t � E [�t]

3(4) is a generalization of (17) in Jagannathan and Wang (1996) if �vw = 1. �t is measurement error in a general
sense not in a classical sense, since the assumption that �t? rm;t; rt is not made. In fact, there is good reason for this
omission, since given what the measurement error is intended to re�ect, �t is related to both rm;t and rt.

4Studies by Campbell (1996), Jagannathan and Wang (1996), and Dittmar (2002) note the importance of the return
to human capital in pricing expected returns.
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In Diacogiannis and Feldman (2006), rpt and �t must be correlated. From (5),

Cov
�eet; rpt� = �Cov

�
�t; rpt

�
= �

�
Cov [�t; rmt]� �2 [�t]

�
:

In general, this expression is not zero, which is to say that rpt is an endogenous regressor in (5).
As a result, (5) is a structural equation that unlike (3) cannot, necessarily, be treated as a linear
projection without loss of generality. The fact that the market return is unobservable and any
proxy return, by de�nition, is incomplete affords this distinction. The effects of this distinction
on the ef�ciency of a proxy return relative to the market return is made explicit in the proposition
below.
According to Cochrane (2001), "all factor models are derived as specializations of the consumption-

based model" (p. 151). (1) re�ects this fact. Empirically-based factor models attempt to tie the
discount factor mt to observable variables. Towards that end, consider a linear projection of mt

onto rpt:
mt = a+ brpt + emt (7)

According to Lemma 1 of Shanken (1987), the combination of (5) and (7) implies that

Cov [eet; emt]0��1ee Cov [eet; emt] � �2 (mt)
�
1� �2

�
(8)

where �ee is the covariance matrix of eet, and � is the correlation betweenmt and rpt. All proofs in
this section are given in Appendix A. From Shanken (1987), Cov [eet; emt] "may be interpreted as
a vector of deviations from an exact [single] beta expected return relation" (p. 93). (8) places an
upper bound on these deviations and is useful in determining a similar bound for deviations from
CAPM pricing measured conditional on a proxy return. Proposition 1 formalizes this result in light
of the structural equation in (5) and the potential nonzero covariance between eet and rpt.
Proposition 1 Let the pricing model of (1) and (2) hold for all security returns including the proxy

return, and consider the structural relationship between security returns and the proxy return
as given by (5). De�ne

�p =
E
�
rpt
�

�
�
rpt
� (9)

as the Sharpe performance measure for the proxy return, and

� =
Cov

�eet; rpt�
�2
�
rpt
� (10)

as a measure of the degree to which unobservable components to the market return covary
with the proxy return. Then,

d0��1ee d � �2p(�
�2 � 1) (11)

where
d = E [rt]� (� + �)E

�
rpt
�
:

The pricing restriction of (1) and (2) is not testable because the market return is unobserved.
With the exception of �, (11) is constructed entirely in terms of quantities that can be estimated di-
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rectly from observable data, provided, of course, that (5) can be identi�ed. Proposition 1, therefore,
is a testable analog to (1) and (2) conditional on a prior belief about the value of �.
The proof of Proposition 1 in Appendix A demonstrates that

� =
�p

� [mt]
;

implying that � is strictly positive. Let �m =
E[rmt]

�[rmt]
; the Sharpe performance measure for the

market return. Given (2), � [mt] = �m, and � is a ratio of Sharpe performance measures. As a
result, � is afforded a geometric interpretation in mean-standard deviation space as the ratio of
the slope of the security market line passing through the excess proxy return to the slope of the
security market line tangent to the minimum variance boundary at the excess market return. This
ratio gauges the relative ef�ciency of the excess proxy return.

Corollary 1 In (4), suppose that �t is constant such that �t = �c. Then

d0��1ee d = 0 (12)

where d = � from (3) if and only if �c = 0.

If �c = 0, then according to (52) � = 1 and (11) holds as an equality to zero. Corollary 1
then provides a basis for tests of mean-variance ef�ciency like those proposed by Gibbons, Ross,
and Shanken (1989) as well as MacKinlay and Richardson (1991), since these tests rely on the
assumption that �t = �c so that Cov

�eet; rpt� = 0. In such a case, (12) is a statement of the null
hypothesis

H0 : � = 0; �c = 0; (13)

since
d = E [rt]� �E

�
rpt
�
= �+ ��c (14)

given (5), (6) and the fact that � = 0.5 Failure to reject this null is a failure to reject equivalence
between the market and proxy return as well as mean-variance ef�ciency of the market return.
Rejection of this null, on the other hand, is only a rejection of mean-variance ef�ciency of the
proxy return, since either �c 6= 0, in which case the proxy return is inef�cient because � < 1, or
� 6= 0, in which case the proxy and the market return are inef�cient, or both. The inability to
distinguish between these alternatives illustrates the Roll (1977) critique that the CAPM theory is
not directly testable.
If �t = �c, then (5) can be treated as a projection equation without loss of generality. In this

case, the manner in which Proposition 1 allows for an indirect assessment of the CAPM is parallel
to that of Proposition 2 in Shanken (1987). Speci�cally, if � = 0, then d 6= 0 because �c 6= 0. For a
given Sharpe performance measure of the proxy return, the magnitude of this distance d away from
zero is bounded from above by the correlation between the market return and the proxy return.6

5From (14), d = 0 if � = ���c. This latter equality is only satis�ed under (13). To see why, note that � cannot
be a zero vector. Therefore, if � is nonzero, then �c needs to be nonzero for the equality to hold. But, given (52) a
nonzero �c means � < 1, which, in turn, means that d 6= 0 given (11).

6Direct proportionality between the economic aggregate and the market return in (2) leads to � = Cov[rmt; rt]
�[rmt]�[rt]

.
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Let �o be a prior belief on the true value of �. For a given d, �eet , and �p, let � be the value of
� 2 (0; 1] that, if it exists, satis�es (11). If � < �o, such a result is interpreted as evidence that not
only is �c 6= 0 but � 6= 0 as well. The strength of this evidence increases as �� �o becomes more
negative and is, of course, conditional on the correctness of �o.
Suppose �t 6= �c so that the structural equation in (5) no longer coincides with a projection

of rt onto rpt. Diacogiannis and Feldman (2006) postulate that correlation between rpt and �t
"might be material when considering the misspeci�cation caused by ignoring, in implementations
and tests, the addendum related to [�t]" (p. 20). The following corollary con�rms this hypothesis.

Corollary 2 Let ept be the errors from a linear multivariate projection of rt on rpt, and de�ne
�ep as the variance-covariance matrix of these errors. Given (4), �ee ��ep is positive semi-
de�nite.

According to Corollary 2, �ee � �ep and, by extension, ��1ep � ��1ee . From (54) and (55) in the
proof of Corollary 2,

d = E [rt]� (� + �)E
�
rpt
�
= �p;

the vector of constant terms from a linear multivariate projection of rt on rpt. If (5) is replaced by
(53), then the left-hand-side of (11) becomes �0

p�
�1
ep
�p. Otherwise, the left-hand-side of (11) is

�
0
p�

�1ee �p and
�
0

p�
�1
ep
�p � �

0

p�
�1ee �p:

From (57), a case where these two quadratic forms equate is when �t = �c. In general, however,
the degree to which expected returns deviate from the CAPM prediction measured conditional on a
proxy return will tend to be overstated if��1ep is used as the weighting matrix as opposed to�

�1ee . As
a consequence, �will tend to be understated. The end result is that treating the relationship between
security returns and the proxy return as a projection equation instead of a structural equation will
bias test results of the inequality restriction in Proposition 1 towards rejecting the CAPM theory.
Hansen and Jagannathan (1997) criticize model misspeci�cation tests that depend on the variance-

covariance matrix of the pricing errors because these tests grant a "reward for sampling error asso-
ciated with the sampling mean." In reference to the CAPM, this paper argues that higher sampling
error should be accounted for to the extent that it relates to misspeci�cation of the market return.
Ignoring this misspeci�cation will bias the test results towards rejecting the theory because of the
proxy being used in the test not because of any failing in the theory itself.
If �t = �c, then according to (14),

�p = �+ ��c: (15)

In this case, the difference between the alpha proxy and the true alpha is directly proportional to
the location-shift in the market return relative to the proxy return. This difference is expected to be
positive (negative) if � is positive (negative), since a negative �c implies that � > 1 given (52). If
�t 6= �c, then

�p = �+ �E [�t]� �E
�
rpt
�

(16)

given (55). In this case, the difference between the alpha proxy and the true alpha is ambiguous.
Affecting this difference are both the mean of the omitted components as well as the covariance
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between those components and the proxy return. Provided that the CAPM holds, (15) explains the
empirical discovery of "signi�cant" alpha to be the result of mismeasuring the market return. (16)
adds to this explanation the sensitivity of individual security returns to changes in the source of
this mismeasurement.

3. Conventional Tests

Suppose �t = �c in (4), and assume that et � N (0; �e). Let bd and b�e = 1
T

TPbetbe0t
t=1

denote

estimates of �p in (15) and �e, respectively, from N separate OLS regressions of rit on rpt, where
rit is the ith element of rt and t = 1; : : : ; T . b�p is an estimate of the proxy performance measure
computed from the sample mean and variance of rpt. Consider the following de�nitions:

Q � T bd0b��1e bd
1 + b�2p ; � � Td0��1e d

1 + b�2p :

Gibbons, Ross, and Shanken (1989) show that [N�1 (T �N � 1) =T � 2]Q, conditional on rpt,
is distributed as a noncentral F with degrees of freedom N and T � N � 1 and non-centrality
parameter �. Multiply both sides of (11) by T=

�
1 + b�2p�. Then Proposition 1 is equivalent to

H0 : � �
T�2p(�

�2 � 1)

1 + b�2p ; (17)

which establishes an upper-bound on the non-centrality parameter.
If � = 1, then � = 0, meaning that under Corollary 1, Q follows a central F distribution. In

this case, a test of (13) follows immediately because Q is stated entirely in terms of observable
quantities. Suppose, instead, that � < 1. Then, consider conducting a test of � > � conditional
on a value for �p by evaluating (17) given � and �p to obtain a value for � which, in turn, can be
used in the aforementioned noncentral F test. Shanken (1987) follows this approach. In addition,
for a given signi�cance level �, consider �nding � such that the p-value from the non-central F test
equals �. Then, � is the maximum correlation that satis�es Proposition 1 at a signi�cance level of
� (for the empirical tests in section 6, � = 0:05). Following the discussion in section 2, whether
�o is greater than (less than) � then determines whether the CAPM is rejected (not rejected).
Violations of the normality assumption for et are well documented in the literature.7 Numer-

ous studies support Engle's (1982) Autoregressive Conditional Heteroskedasticity (ARCH) and
Bollerslev's (1986) Generalized ARCH (GARCH) in security returns.8 Common speci�cations of
these models assume et to be conditionally normal, which (as demonstrated by Milhoj (1985) or
Bollerslev (1986)) results in the unconditional distribution of et being leptokurtic, although the
standardized residuals of et are still shown to be non-normal empirically. In light of these �nd-
ings, the potential for mean-variance ef�ciency tests like those just described to be sensitive to the
normality assumption motivated the search for more robust testing methods. From the results of

7See Mandelbrot (1963) and Fama (1965) as early examples.
8Bodurtha and Mark (1991) �nd evidence of ARCH in a conditional test of the CAPM.
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section 2, it is apparent that normality is not necessary for deriving data-dependent restrictions im-
plied by mean-variance ef�ciency (or relative ef�ciency). Rather, such a condition is statistically
convenient for determining the distributional properties of the resulting test statistics. With this
observation in mind, MacKinlay and Richardson (1991) proposed a GMM-based test that, by con-
struction, is distribution free and able to accommodate general forms of heteroskedasticity. These
authors uncovered material differences between their approach and that of Gibbons et al. (1989)
at conventional levels of signi�cance.
A unifying restriction of both Gibbons et al. (1989) and MacKinlay and Richardson (1991)

is that �t = �c. Corollary 2 illustrates how a violation of this assumption could impact a test
of relative mean-variance ef�ciency. The testing methodology developed in the next section is
robust to �t and is built upon the premise that eet follows a GARCH process but one that is not ,
necessarily, conditionally normal.9

4. Econometric Methodology
An empirical investigation into Proposition 1 requires estimation of all quantities, with the

exception of �, in (11). From the proof of Corollary 2, d is the vector of constant terms from
a multivariate projection of rt onto rpt. As such, the individual elements of d can be estimated
following the same approach outlined in section 3. If �t = �c, then �ee = �e and can also be
estimated in the manner described under section 3. If, on the other hand, �t is stochastic, then rpt
is an endogenous regressor in (5). Any method for estimating (5) and, hence, �ee needs to be robust
to this endogeneity.
If Cov

�eet; rpt� 6= 0, then (5) represents a triangular system. In general, such a system is
expressed as

Y1;t = X
0

t
1o + Y2;t�o + �1;t (18)

Y2;t = X
0

t
2o + �2;t (19)

where Y1;t and Y2;t are observed endogenous variables; Xt is a vector of predetermined variables
that can include lags of the endogenous variables, and �1;t and �2;t are unobserved errors or shocks.
Let �t =

�
�1;t �2;t

�0. The term 
1o refers to the true value of 
1, with the same interpretation
holding for all other parameter values. In the context of section 2, Y1;t is a given excess security
return, Y2;t a proxy to the excess market return, and Xt is inclusive of only a constant term. In
general, Xt can also contain forecasting instruments, in which case (18) is analogous to (42) in
section 8. In this case, it is assumed that these forecasting instruments apply to both individual
security returns and the proxy return.10 Regardless of the speci�cation for Xt, (18) and (19) are
stated such that mean restrictions (e.g., zero restrictions on some of the parameters in 
1o) are
not available for identifying the structural form of (18). Under these conditions, the sketch of an
identi�cation method for (18) follows together with a proposed estimator. A complete treatment
of identi�cation is relegated to Appendix B. Note that (18) makes no explicit use of the error
decomposition in (6), meaning that the effect of �t is considered at the level of �1;t and does

9Diebold, Im, and Lee (1989) provide evidence that market model residuals are heteroskedastic.
10In support of this assumption, it seems dif�cult to envision an instrument that is strongly related to a given proxy

return yet wholly unrelated to an individual security return or portfolio of security returns.
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not attempt to isolate or identify properties unique to �t. The functional form describing the
relationship between �1;t and �2;t is suf�ciently general to place only minimal constraints on the
process governing �t.
Let
t�1 be the information available to investors in period t�1, and consider St�1 � 
t�1 that

is observable to the econometrician. Assume that �t follows the de�nition of semi-strong GARCH
given in Drost and Nijman (1993) so that

E
�
�t j St�1

�
= 0; E

h
�t�

0

t j St�1
i
= Ht:

Let
vech (Ht) = ht; vech

�
�t�

0

t

�
= et:

Throughout this section and Appendix B, vech (�) denotes the matrix operator that stacks the lower
triangle, including the diagonal, of a symmetric matrix into a column vector, while vec (�) is the
matrix operator that stacks the columns of a matrix into a column vector. Consider the parameter-
ization

ht = eCo + Aoet�1 +Boht�1; (20)

where eCo is a 3� 1 column vector and Ao and Bo are both 3� 3 diagonal matrices.

Assumption A1: Ht is positive de�nite almost surely.

A1 restricts the parameters in eCo, Ao, and Bo. One way to satisfy A1 is to specify ht according
to a diagonal BEKK model. The BEKK model for general multivariate GARCH processes is de-
veloped in Engle and Kroner (1995). Details on the speci�cation appropriate for (20) are provided
in Appendix B.
(20) is the bivariate analog to the GARCH(1, 1) model of Bollerslev (1986). Let ht =

�
h11;t h12;t h22;t

�0,
where hij;t = E

�
�i;t�j;t j St�1

�
for i; j = 1; 2: In addition, de�ne aiio as the ith diagonal element

of Ao, with an analogous de�nition for biio. Then, (20) speci�es

h11;t = ec1o + a11o�
2
1;t�1 + b11oh11;t�1

h12;t = ec2o + a22o�1;t�1�2;t�1 + b22oh12;t�1

h22;t = ec3o + a33o�
2
2;t�1 + b33oh22;t�1

This speci�cation imposes a set of exclusionary restrictions. For instance, �1;t�1�2;t�1 is excluded
from both h11;t and h22;t as are squared cross-terms (i.e., �22;t�1 from h11;t and �21;t�1 from h22;t).
In addition, all squared cross-terms are excluded from h12;t. These exclusionary restrictions on
the functional form of hij;t are what identify (18). An examination of the reduced form to (20)
illustrates this result.
LetRt =

�
R1;t R2;t

�0
be the reduced form errors from (18) and (19). Relating these reduced

form errors to their structural form counterparts is the equation

�t = �
�1
o Rt; (21)

where �o =

�
1 �o
0 1

�
. (21) can be used to solve for the reduced form of Ht. Let Hr;t denote this
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reduced form, and consider

vech
�
Hr;t

�
= hr;t; vech

�
RtR

0

t

�
= rt:

Then
hr;t =

eCr;o + Ar;ort�1 +Br;ohr;t�1 (22)

is the reduced form of (20), where Ar;o and Br;o are both upper triangular. Off diagonal terms in
Ar;o (Br;o) are functions of the structural parameters in Ao (Bo) as well as the parameter �o from
(18). For example

Ar;o =

24 a11;ro a12;ro a13;ro
0 a22;ro a23;ro
0 0 a33;ro

35 : (23)

From (23), consider

Ar;o =

�
a22;ro a23;ro
0 a33;ro

�
=

�
a22;o �o

�
a33;o � a22;o

�
0 a33;o

�
: (24)

Since an analogous partition Br;o can be de�ned from Br;o, �o is identi�ed from the reduced-form
GARCH model in (22) as

�o =
a23;ro + b23;ro�

a33;ro � a22;ro
�
+
�
b33;ro � b22;ro

� : (25)

The formal identi�cation result is stated as Proposition 2 in Appendix B.
Proposition 2.1 of Iglesias and Phillips (2004) demonstrates that if the structural errors from

a triangular system follow a diagonal GARCH process like (20), the reduced form errors, while
still GARCH, are no longer diagonal GARCH. (23) illustrates this result. (24) illustrates that it is
precisely this departure from diagonality in the reduced form that identi�es (18).
(24) also makes plain that identi�cation of the triangular system is a direct consequence of

heteroskedastic errors. Suppose �2;t is homoskedastic such that all autocovariances of �22;t are zero.
Then �o is not identi�ed. Given A1, homoskedasticity of �2;t implies that a22;o = a33;o = 0 (see
(20) and the de�nition of Ao in (59)), which prevents identi�cation to follow from functional form
restrictions on the dynamics of h12;t for the simple reason that h12;t is constant.11 Moreover, the
proof to Proposition 2 in Appendix B demonstrates that a constant conditional covariance is not
suf�cient for identi�cation. Coupled with this restriction needs to be the condition that �22;t has
nonzero autocovariances.
The above identi�cation result is a second-moment analog to exclusion restrictions for 
1o. In

(20),Ao andBo impose zero restrictions on all off-diagonal elements. Suppose instead, thatAo and
Bo are fully general in the sense that they contain no zero entrees. Then, the number of reduced
form parameters in Ar;o (Br;o) is less than the corresponding number of structural parameters (i.e.,
those in Ao (Bo) plus �o). As a consequence, �o is not identi�ed.
The identi�cation result sketched above can be used to de�ne a consistent estimator for (18)

11Proposition 2.6 of Engle and Kroner (1995) states that (58) is general in the sense that it includes all possible
positive de�nite diagonal models.
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and (19). In de�ning this estimator, two observations are important.

Observation 1: From (24), identi�cation of �o depends on the conditional covariance between �1;t
and �2;t as well as the conditional variance of �2;t.

Given this observation, the proposed estimator is de�ned in terms of et =
�
�1;t�2;t �22;t

�0.
Observation 2: (25) can be rewritten as

�o =
a23;ro + b23;ro�

a33;ro + b33;ro
�
�
�
a22;ro + b22;ro

� : (26)

The implication of this observation is that identi�cation of �o depends on Ar;o+Br;o. Separate
identi�cation of Ar;o and Br;o, while suf�cient, is not necessary to identify �o.
Since Xt 2 St�1, it follows from the de�nition of semi-strong GARCH that

E [Xt 
 �t] = 0; (27)

where 
 is the Kronecker product. Let Ao be the 2� 2 diagonal matrix formed from the elements
a22o and a33o in Ao (see (20)), with Bo being similarly de�ned in terms of the elements of Bo.
De�ne �o = Ao +Bo. In addition,

E [et] = �o (28)

where �o =
�
�12o �22o

�0, �12o = c21oc22o
1��11o

and �22o =
c222o

1��22o
.12 From (64),

Cov
�
et; et��

�
= �

��1
o Cov

�
et; et�1

�
; � � 1: (29)

(29) relates the autocovariances from a diagonal GARCH model. Hafner (2003) demonstrates this
same result for strong GARCH processes. Necessary for (29) is that et be covariance stationary,
which requires fourth moment stationarity for �2;t.
Let  = f
1; 
2; �; c21; c22; �11; �22g, and de�ne 	 as the set of all possible values for

 . Given Corollary 3 in Appendix B, the moment conditions in (27)�(29) are uniquely satis�ed at
 =  o. De�ne

�1;t = Y1;t �X
0

t
1 � Y2;t�; �2;t = Y1;t �X
0

t
2;

and let
g1 =

bE [Xt 
 �t] ; g2 =
bE [et]� �;

g3 = dCov �et; et�� �� ���1dCov �et; et�1� ; � � 2:

where bE and dCov are estimates of the expectation and covariance operators, respectively. Let
g =

�
g1 g2 vec (g3)

�0. Then Theorem 2.6 of Newey and McFadden (1994) can be used to
establish b = argmin

 2	
g0Wg (30)

12See (59) for the de�nition of the constant terms in eCo.
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as a consistent estimator, whereW is a positive de�nite weighting matrix. (30) is the estimator for
triangular systems given semi-strong GARCH developed in Prono (2008). Monte Carlo studies ofb support this result.13 IfW = I , then (30) is the single-step GMM estimator�see Hansen (1982).
Let �2iio = E

h�
�i;t�2;t � �i2

�2i for i = 1; 2, and de�ne e� ii as a preliminary estimate of � iio.
Construct eZ = " e�11 0

0 e�22
#
. Suppose Xt is a k � 1 vector, and consider the following alternative

weighting matrix:

W
� eZ� =

2664
I2k�2k � � � 0
... I2�2

...

0 � � �
� eZ 
 eZ��1

3775 : (31)

The weights
� eZ 
 eZ��1 impact the moments that de�ne the autocovariances of et (i.e., g3), trans-

forming these autocovariances into autocorrelations. Prono (2008) documents improved �nite sam-
ple properties of (30) if W = W

� eZ� as opposed to W = I . For this reason, estimation of (18)

and (19) is based on (30) withW = W
� eZ�.

Application of (30) to the N separate structural equations implied by (5) produces consistent
estimates of the N elements in eet, which can then be used to estimate �ee. To close this section,b�p = bE[rpt]b�22 .

5. Test Methodology
The inequality restriction in (11) is equivalent to

Ho : � �
s

1

1 + �2pd
0��1ee d

(32)

which identi�es an upper bound for �, since � is strictly positive. De�ne � �
q

1
1+�2pd

0��1ee d
. Sec-

tion 4 outlines a methodology for obtaining b�. An analogous approach to Shanken (1987) would
be to determine the distribution (either asymptotic or exact) of � so that a test of � > � could be
conducted. For a given signi�cance level �, the value of � that produces a p-value from that dis-
tribution equal to � is then the maximum correlation supporting Proposition 1. A comparison of �
to �o determines whether the CAPM is rejected (not rejected) depending on whether the inequality
is < (>). Determining a distribution for �, however, would be dif�cult, owing, in no small part, to
the heteroskedastic properties assumed for eet that permit its identi�cation. An alternative approach
would be to bootstrap a standard error for b� and use this standard error to determine �. This paper
adopts the alternative methodology.
Bootstrapping a standard error for b� requires resampling from the N excess security returns

and the excess proxy return used to form the quantities b�p, bd, and b�ee. Such is a nontrivial exercise
13These studies were presented in an earlier version of this paper and are available upon request.
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since these returns are not iid and, in fact, their departure from independence (both within and
across return series) is a key assumption underlying the estimator that generates b�ee. De�ne

�
(i)
t =

h
�i;t �e2;t

i0
; i = 1; : : : ; N;

where �i;t = Yi;t � 
io � Ye2;t�io, the errors from the structural equation for the ith security return
(Ye2;t is the proxy return), and �e2;t is the demeaned proxy return. Suppose that

�
(i)
t =

�
H
(i)
t

�1=2
V
(i)
t ; (33)

where H(i)
t is the conditional variance-covariance matrix for the ith security return and the proxy

return parameterized according to (20), and V (i)
t =

h
Vi;t Ve2;t

i0
. The vector V (i)

t is assumed to be
iid with mean zero and identity variance-covariance matrix. (33) de�nes a strong GARCH process.
Unlike most applications of strong GARCH, however, no particular distribution is assumed for
V
(i)
t . The estimator in (30) supplies b�(i)t . Conditional on this estimate, one can obtain bH(i)

t . As a

result, bV (i)
t =

� bH(i)
t

��1=2b�(i)t . Bootstrap samples are drawn from bV (i)
t . Let bV (i)�

t be a bootstrap

sample. Then b�(i)�t =
� bH(i)�

t

�1=2 bV (i)�
t ;where bH(i)�

t is based upon parameter estimates from the
original sample, and bY �e2;t = b
e2 +b��e2;t; (34)bY �

i;t = b
i + bY �e2;tb�i +b��i;t; i = 1; : : : ; N; (35)

where b
e2, b
i, and b�i are also obtained from the original sample. The resulting bootstrap series is
then used to estimate b�� given the estimation method described in section 4.
De�ne E� as the expectation operator relative to the distribution of the bootstrap sample con-

ditional on the original sample, and let

g =
1

T

TX
t=1

gt:

Following Hall and Horowitz (1996), the bootstrap version of the moment conditions in (30) is

g�t = gt � E�bgt; (36)

where bgt is gt evaluated at b , the parameter estimates from the original data sample. (36) recenters
the bootstrap moment conditions such that E�g�t = 0. In general, E�gt 6= 0 when the number of
moment conditions exceeds the number of parameters in  . If gt is used as the moment conditions
instead of g�t , then b � will have different asymptotic properties than b . In order to avoid this
discrepancy, b � = argmin

 2	
g�0W �g�; (37)
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whereW � = W
� eZ��, the bootstrap analog to (31). The bootstrap standard error of b� is based onb �.

Given a standard error for b�, the asymptotic t statistic
b� = b� � �bse�b�� (38)

can be constructed to test b� > �. This statistic is asymptotically pivotal with an asymptotic dis-
tribution assumed to be well approximated by a standard normal.14 As a result, for � = 0:05, the
value of � can be determined such that � (b�) = �.
According to MacKinnon (2007), bootstrapping (38) will generally lead to an asymptotic re-

�nement. Such a practice is referred to as the double or iterated bootstrap. Implementing the
double bootstrap, however, is very computationally expensive. For example, de�ne B1 as the num-
ber of bootstrap iterations used to generate bse�b�� and B2 as the number of iterations used to
generate the bootstrap distribution of (38). If B1 = B2 = 1000, then the total number of iterations
required for the double bootstrap is approximately 1 million. Given the size of the data samples
used to construct b� (see section 6), the standard normal will likely provide a descent approximation
to the asymptotic distribution of (38). A Monte Carlo study (see section 7) veri�es this claim. As
a result, this approximation is used as opposed to the double bootstrap alternative.

6. Test Results
All tests are conducted using size, B/M, and momentum portfolios. The returns are measured

weekly (in percentage terms) from 10/6/67 through 9/28/07. Test results consider 20- and 10-
year subperiods of this overall date range. The daily 25 size-B/M and 25 size-momentum return
�les (each 5�5 sorts with breakpoints determined by NYSE quintiles) formed from all securities
traded on the NYSE, AMEX, and NASDAQ exchanges are used to construct the weekly return
series.15 Monte Carlo studies of (30) reveal sizable bene�ts in terms of reduced �nite sample
bias and increased ef�ciency from using large sample sizes due to the fact that higher moments
are being estimated. In light of this �nding, weekly returns are utilized. Further supporting this
frequency choice is the fact that weekly returns reduce day-of-the-week and weekend effects as
well as the effects of nonsynchronus trading and bid-ask bounce. The size portfolios considered
are "Small," "Mid," and "Large." "Small" is the average of the �ve low-market-cap portfolios,
"Mid" the average of the �ve medium-market-cap portfolios, and "Big" the average of the �ve
large-market-cap portfolios. The B/M portfolios considered are "Value," Neutral," and "Growth."
Value" is the average of the �ve high-B/M portfolios, "Neutral" the average of the �ve middle-B/M
portfolios, and "Growth" the average of the �ve low-B/M portfolios.16 Finally, the momentum
portfolios considered are "Losers," "Draws," and "Winners." "Losers" is the average of the �ve
14From MacKinnon (2007), "a test statistic is asymptotically pivotal if its asymptotic distribution does not depend

on anything that is unknown" (p.5).
15These return �les are available on Kenneth French's website.
16De�nitions for the "Small," "Large," "Value," and "Growth" portfolios are taken from Lewellen and Nagel (2006).
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low-return-sorted portfolios, "Neutral" the average of the �ve middle-return sorted portfolios, and
"Winners" the average of the �ve high-return-sorted portfolios. The proxy return is the CRSP
value-weighted index return formed from all securities traded on the NYSE, AMEX, and NASDAQ
exchanges. The risk-free rate is the one-month Treasury bill rate from Ibbotson Associates.
The tests focus on (17) and (32). The former is conducted following the approach developed in

Gibbons, Ross, and Shanken (1989), referred to hereafter as GRS, that is implemented in Shanken
(1987) described in section 3. The latter is conducted following the approach of section 5 under
two cases: (1) �t = �c, (2) �t is stochastic. Case 1 will be referred to as Bootstrap Proposition
1 constant (BPC), while case 2 will be referred to as Bootstrap Proposition 1 stochastic (BPS).
The only difference in implementation between BPC and BPS is that under the former, OLS re-
gressions estimate the relationship between security returns and the proxy while, under the latter,
this relationship is estimated using (30) and its bootstrap analog in (37). A comparison of BPC
to GRS evidences the effects of conditional heteroskedasticity on a test of relative mean-variance
ef�ciency. A comparison of BPC to BPS evidences the effects of relating security returns to the
proxy return via a projection as opposed to a structural equation. When implementing BPS, the
number of lags used in (30) is set to � = 4. The choice of this lag length is motivated by the
frequency of returns as well as the �nding in Prono (2008) that higher lag lengths, while successful
at reducing the variability of b also increases the �nite sample bias. Finally, all bootstrap routines
are conducted over 1000 trials.
Table 1 (A and B) and 2 (A and B) summarizes results from two 20-year subperiods: (1) 10/6/67

- 9/25/87, (2) 11/6/87 - 9/28/07. Tables 1A and 2A provide summary statistics of the returns used
in the tests as well as the alpha proxies (accompanied with heteroskedasticity-corrected standard
errors) from individual OLS regressions of those returns on the proxy. Tables 1B and 2B describe
the maximum correlation between the proxy return and the market return that still supports the
CAPM result at a 5% signi�cance level according to the GRS, BPC, and BPS tests. Recall that all
three tests are based on the inequality restriction in (11). If � < 1, then a test of this restriction
requires a prior belief on the true value of the correlation �o. From Roll (1977), �o = 0:90 or
above. This value will be used throughout the discussions of the test results.
For the GRS test, if � < 1, then a test of (17) also requires the true value of �p. Possible

values for �p are taken from Shanken (1987). �p = 0:52 is the most likely (or expected) value.
�p = 0:22 and �p = 0:86 are - 1 standard deviations and + 2 standard deviations away from this
expected value, respectively. All values of �p are annualized for presentation but expressed in
weekly terms when used in the tests. Assuming an annual standard deviation of 20% for the proxy
return, �p = 0:22 corresponds to a "market" premium of 4.4%, �p = 0:52 a "market" premium
of 10.4%, and �p = 0:86 a "market" premium of 17.2%.17 This range for �p is suf�ciently wide
to encompass the point estimates for �p implied by the different subperiods considered. Finally,
�p = 1:00 is also reported as a value for the proxy Sharpe ratio that is greater than any conceivable
true value.
Since (17) requires �p to be known, for comparative purposes �p is treated as known in (32)

for the BPC and BPS tests. In addition, however, �p is also treated as unknown in the latter two
tests, meaning that its value is bootstrapped along with every other random quantity in b�. In the
tables, the heading "unknown" under Panel F: BPC and Panel G: BPS details the results of this
17By "market" premium, what is meant is the market premium implied by the proxy.
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more general treatment.
Under Tables 1B and 2B, note that (1) the projection errors appear to be non-normal, char-

acterized by (at times) signi�cant skewness and (often times) excess kurtosis, and (2) there exist
apparent differences between the projection and structural errors. These two �ndings foreshadow
differences between the GRS, BPC, and BPS tests. Also under Tables 1B and 2B, a comparison
of the maximum correlations for known values of �p between the GRS and BPC tests reveals the
general tendency of higher correlations implied by the former. Such a tendency implies that the
former test will tend to under-reject the CAPM relative to the latter. MacKinlay and Richardson
(1991) document a similar �nding in their empirical work. As an example, for the period 10/6/67
- 9/25/87 at �p = 0:52, � = 0:86 according to GRS but � = 0:74 according to BPC. For the period
11/6/87 - 9/28/07, the same comparison yields � = 1:00 according to GRS as opposed to � = 0:93
according to BPC. This latter comparison possesses economic signi�cance since the former cannot
reject mean-variance ef�ciency of the proxy (see Corollary 1), while the latter can. When compar-
ing GRS and BPC across the two 20-year time periods, the largest differences in relative ef�ciency
occur for the size portfolios. The B/M portfolios show a similar directional difference, though
on a more muted scale. For both 20-year time periods, the maximum correlations measured rela-
tive to the momentum portfolios are higher for BPC than for GRS. The difference between these
correlations, however, is small.
A comparison of the maximum correlations for constant values of �p between the BPC and

BPS tests supports the results of Corollary 2. These correlations are generally higher under the
latter. The largest correlation difference between BPC and BPS occurs for the size portfolios in
the second 20-year time period for �p = 0:22. In this case, � = 0:64 under BPC, while � = 0:86
under BPS. Also in the second 20-year period, positive correlation differences between the BPS
and BPC tests are apparent across all values of �p for the B/M and momentum portfolios.
Treating �p as unknown under BPS offers the most general test considered and is the principal

contribution of this paper to relative ef�ciency testing. In contrast, the GRS method requires �p
to be known. The most natural means of comparison between GRS and BPS with an unknown
�p is to assume that �p = b�p (the sample-speci�c estimate of �p) for the former, since b�p is the
point estimate around which bootstrap samples are generated. For the �rst 20-year time period,b�p = 0:22 while for the second, b�p � 0:52. In the second 20-year time period, therefore, � =
0:54 under GRS as compared to � = 0:75 under BPS for the momentum portfolios. The former
result implies that the proxy return explains less than 30% of the variation in the market return
(0:542 = 0:29), while the latter implies that the proxy return accounts for over 55% of the variation
in the market return. In this case, GRS rather signi�cantly understates the relative ef�ciency of the
proxy return when compared to BPS. An inference from this result is that the GRS test will tend
to over-reject the CAPM prediction. Understatement of the relative ef�ciency of the proxy return
by GRS when compared to BPS (with an unknown �p) is consistent across both time periods and
for all portfolios considered. The difference in the implied mean-variance location of the proxy
portfolio can be striking. For instance, � is 59% and 64% higher according to BPS when compared
to GRS for the B/M and momentum portfolios, respectively, in the �rst 20-year time period.
The BPS test with an unknown �p cannot reject the null hypothesis that the proxy return is

mean-variance ef�cient for size portfolios in the most-recent 20-year period. Otherwise, the test
results do not speak favorably for the CAPM. If �o = 0:90, then the result of Proposition 1 is re-
jected for all remaining time periods and portfolios. The CAPM fares decidedly worse on B/M and
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momentum portfolios relative to size portfolios and performs the poorest on momentum portfolios.
A potential bright-spot emerges when comparing results between the two time periods. The size
of the CAPM errors for all the portfolios considered is greatly reduced in the most-recent period,
since the implied correlations very nearly double. This paper, therefore, documents a signi�cant
increase in the ability of the CAPM to price expected returns post the 1987 market crash.
As a robustness check, the GRS, BPC, and BPS tests are also applied to three 10-year subpe-

riods: (1) 10/7/77 - 9/25/87, (2) 11/6/87 - 9/26/97, (3) 10/3/97 - 9/28/07.18 Tables 3 (A and B)
through 5 (A and B) summarize the results. These results are largely consistent with those for the
two 20-year subperiods discussed above. Namely, for constant values of �p, GRS tends to imply
higher correlations than BPC, and BPC tends to imply lower correlations than BPS. In addition,
GRS when evaluated at �p = b�p tends to imply lower correlations than BPS evaluated with an
unknown �p. Moreover, signi�cant differences between the tests continue to be evidenced. For
example, during the period 11/6/87 - 9/26/97, the GRS test rejects the CAPM prediction at all
levels of �p for the B/M portfolios. The BPS test with an unknown �p, on the other hand, does not.
During the period 10/3/97 - 9/28/07, also for the B/M portfolios, the GRS test fails to reject the
CAPM at all levels of �p, while the BPS test with an unknown �p offers a sound rejection.

7. Monte Carlo
The previous section establishes that inferences on the relative ef�ciency of a given proxy return

can be sensitive to the test considered. This section investigates the source of these differences. For
instance, do these differences signal the inappropriateness of a normality assumption for the proxy
return and the innovations to individual security returns? Do they signal the inappropriateness of
projecting security returns onto the proxy return? Alternatively, do they re�ect poor �nite sample
performance of the GMM estimator in (30) or the fact that the asymptotic distribution of the test
statistic in (38) is not well approximated by a standard normal?
In order to assess these possibilities, consider a Monte Carlo study of the following design.

From (33), with N = 3 let the individual components of V (i)
t be distributed as standardized

Gamma(2,1) random variables, and parameterize H(i)
t using the estimates obtained for the B/M

portfolios over the period 11/6/87 - 9/28/07 that do not assume h
ie2;t = 0.19 Further, let b
e2 andb�i from (34) and (35), respectively, be obtained from (30) applied to the same data set mentioned

above, and consider bY �e2;t and bY �
i;t to be a simulated proxy return and ith individual security return,

respectively. Consider the pricing restriction of (11) stated in terms of estimated quantities. Con-
ditional on bH(i)

t , b
e2, and b�i, b
i in (35) is set so that the individual components of bd are equal and
support � = 0:90.20 Therefore, the data generating process (DGP) considered in this study supports
18The period 10/6/67 - 9/30/77 is not considered because the mean of the proxy return is negative.
19The Gamma(2,1) distribution is chosen because, when combined with bH(i)

t , this distribution produces errors with
unconditional skewness and kurtosis measures comparable to those described under Panel D for the B/M portfolios of
Table 2B.
20From (64), b
i = bdi + b�i bE �rp;t� :

Let bdi = bdj 8 i; j = 1; 2; 3. From the B/M portfolios and proxy return measured over the period 11/6/87 - 9/28/07, bdi
is calibrated such that � = 0:90 if (11) is treated as an equality. b�i is the slope parameter from an OLS regression ofb�i;t on Ye2;t. bE �rp;t� is the sample mean of Ye2;t.

18



the CAPM.
Given the DGP described above, this study examines the rejection rates of the GRS, BPC, and

BPS tests at 10%, 5%, and 1% signi�cance levels when either � or � is set equal to 0:90. For the
GRS test, �p is assumed to be known and is set equal to the estimate from the original sample.
For the BPC and BPS tests, �p is treated as unknown. For all three test statistics, simulations are
conducted across 500 trials generating excess return series of 1000 observations each. When con-
structing the individual excess return series for each trial, the �rst 200 observations are dropped to
avoid initialization effects. For the BPC and BPS statistics, within each simulation trial a bootstrap
of b� is conducted over 250 repetitions.21 Parameter estimates for implementing these routines do
not vary by simulation trial. These parameter estimates are generated from the original data sample
in the manner described above, although in the case of the BPC statistic, the additional constraint
of h

ie2;t = 0 is imposed.
Table 6 reports the simulation results. Both the GRS and BPC statistics over-reject the null

hypothesis that � is at least 0:90 or, equivalently, that the CAPM holds. Across the size levels
considered, the GRS statistic over-rejects more than does the BPC statistic. Simulation studies of
Zhou (1993) and Chou (1996) show that the GRS statistic tends to over-reject the null hypothesis
of an ef�cient proxy return (i.e., that � = 1) when the distribution of the errors to the market
model (see (5)) is non-elliptical.22 The results presented here compliment those of Zhou (1993)
and Chou (1996) by showing that the tendency for GRS to over-reject extends to tests of relative
ef�ciency where temporal dependence is the factor governing the non-elliptical nature of the error
distributions.
In general, the BPS statistic is appropriately sized. A tendency for under-rejecting the null

hypothesis is evident at the 10% signi�cance level, but this tendency is modest and is no larger
in absolute value than the size distortions evidenced by the other two tests.23 No such tendency
(in either direction) is meaningfully evidenced at either the 5% or 1% signi�cance levels. As a
result, it does not appear that poor �nite sample performance of the GMM estimator and/or poor
approximation of the asymptotic distribution of the test statistic by a standard normal meaningfully
distorts the size of the BPS test. In addition, results from the BPC and BPS tests support the �nding
of Corollary 2 that describing the relationship between security returns and the proxy in terms of
a linear projection leads to an over-rejection of the CAPM in cases where �t 6= �c. Finally, from
Table 2B, note that the maximum correlations determined by the GRS, BPC, and BPS statistics are
0:73, 0:824, and 0:841, respectively.24 The rank order of these maximum correlations is supported
by the simulation results.

8. Extension
This section generalizes Proposition 1 in terms of conditional moment restrictions and, in doing

so, links mismeasurement of the market return to time-variation in "beta." In order to develop this
21The test results bootstrap b� for 1000 repetitions. Only 250 repetitions are considered here in order to keep the

simulation time feasible. This truncated number of repetitions should still produce a decent estimate of the standard
error.
22The method proposed by Zhou (1993) requires the error distributions to be speci�ed, while Chou (1996) utilizes

a bootstrap approach, but one where temporal independence is assumed.
23Chou (1996) reports similar size distortions at a 10% level for bootstrap tests of mean-variance ef�ciency.
24For the GRS test, �p = b�p = 0:52. For both the BPC and BPS tests, �p is unknown.
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generalization, moments for period t conditional on St�1 are labeled with a t subscript as are
parameters conditional on St�1. Consider the following conditional pricing model

Et [rt] = Covt [mt; rt] ; (39)

and assume
mt =

�
Et [rmt]

�2t [rmt]

�
rmt (40)

so that (39) represents a conditional statement of the CAPM.25 In addition, assume that

� =
Covt [rmt; rt]

�2t [rmt]
(41)

so that market betas are constant parameters and time variation in expected security returns are
driven by changes in the market risk premium. Ferson (1990) asserts that the speci�cation of
constant betas "is an important assumption in the context of models with conditional expectations"
(p.399).26
Consider the following generalization of (5):

rt = 
t + �rpt + eet (42)

where

t = �+ �Et [�t] ;

e�t = �t � Et [�t] :

A case for Cov
�eet; rpt� 6= 0 follows the same logic outlined in section 2. (42) affords a general

speci�cation for the time-varying mean of security returns.27 This time variation is linked to time
variation in both the expected proxy return and the expected value of the components omitted from
that proxy return. In the special case where �t = �c, the source of this time variation is limited to
the expected proxy return.
Next, consider a linear projection ofmt onto rpt conditional on St�1:

mt = a+ btrpt + emt; (43)

where

bt =
Covt

�
rpt; mt

�
�2t
�
rpt
� :

Assume that the correlation between mt and rpt is constant or, equivalently, that the relative ef-
25Harvey (1989), Bodurtha and Mark (1991), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Adrian

and Franzoni (2004), and Ang and Chen (2007) all consider versions of the CAPM in this form.
26In nearly all cases, a conditionally mean-variance ef�cient portfolio will exist, implying that so too will a single

beta model for expected returns. In general, the beta from this model will be time-varying.
27There is a consensus in the literature that expected returns are time-varying conditional on a set of forecasting

instruments. Potential instruments include (i) lagged values of the proxy return to capture reversion as evidenced in
Keim and Stambaugh (1986) and Fama and French (1989) among others, (ii) the term spread as measured by the
difference between the 10-year and 3-month yields and advocated by Fama and French (1989), (iii) Moody's BAA -
AAA credit spread (see, e.g, Campbell (1996), and (iv) the value spread as measured by the return difference between
value and growth stocks (see Campbell and Vuolteenaho (2004)).
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�ciency of the proxy return is constant.28 Then, a straightforward generalization of Lemma 1 in
Appendix A grants that

Covt [eet; e0mt] ��1eet Covt [eet; emt] � �2t [mt]
�
1� �2

�
(44)

where ��1eet is the variance-covariance matrix of eet conditional on St�1. Given (44), an equally
straightforward generalization of Proposition 1 can be stated as

Proposition 3 Let the pricing model of (39) and (40) hold for all security returns including the
proxy return, and consider the structural relationship between security returns and the proxy
return as given by (42). De�ne

�pt =
Et
�
rpt
�

�t
�
rpt
�

and

�t =
Covt

�eet; rpt�
�2t
�
rpt
� :

Then,
d0��1eet d � �2pt(�

�2 � 1) (45)

where
d = Et [rt]� (� + �t)Et

�
rpt
�
:

Proof. See the proof of Proposition 1 in Appendix A, and condition the moments contained therein
on St�1.
The deviation vector d from Proposition 3 is a N -vector of constant terms from the following

model of rt:
rt = d+ (� + �t)Et

�
rpt
�
+ ut (46)

where Et [ut] = 0.29 From (54) and (55), it follows that the vector of time-varying beta proxies
�pt = � + �t. (46) relates time-varying expected security returns to time-varying beta proxies
and a time-varying expected proxy return. Proposition 3 establishes an upper bound on deviations
from conditional CAPM pricing measured with respect to a proxy return. Given a time path for the
Sharpe performance measure of the proxy return, this upper bound is set in terms of the ef�ciency
of that proxy return relative to the market return. Suppose �t = �c. Then (42) is a projection of rt
onto rpt. In this case, beta proxies are not time varying since �t = 0, and time variation in expected
security returns is the result of a time-varying expected proxy return.
Works by Harvey (1989), Bodurtha and Mark (1991), and more recently Adrian and Franzoni

(2004) and Ang and Chen (2007) consider time-varying betas for the CAPM. Adrian and Fran-
zoni (2004) and Ang and Chen (2007) stress time-varying betas as meaningful contributors to the
improved performance of conditional speci�cations of the CAPM relative to their unconditional
counterparts. By de�nition, all of these works measure time-variation in betas with respect to a
28Conditioning the right-hand-side of (51) on St�1 and substituting the expression for �t [mt] from (40) produces

this latter result.
29Noting that Covt[rt; rpt]

�2t [rpt]
= � + �t given (42), (46) is a vector statement of (4) in Bodurtha and Mark (1991).

21



proxy return. In the context of Proposition 3, the �nding of Adrian and Franzoni (2004) and Ang
and Chen (2007) can be interpreted as supporting evidence of a nonzero covariance between eet and
rpt.
Like its unconditional counterpart, Proposition 3 provides an explanation for the empirical

discovery of "signi�cant" alphas that does not invalidate the CAPM theory. In addition, Proposition
3 provides an explanation for the signi�cance of time-varying betas in pricing expected security
returns. Like Proposition 1, a principal strength behind Proposition 3 is that with the exception of
�, all of the quantities in (45) can be directly estimated from observable data. This fact sets up an
indirect test of the conditional CAPM in analogous terms to those described in sections 2 and 5.
Of course, the set St�1 needs to be speci�ed, as does the relationship of this set to expected proxy
returns and the expected value of components omitted from that proxy return.

9. Conclusion
This paper develops a new test of the CAPM that accounts for a proxy's mismeasurement

of the market return both in terms of the former's relation to the latter as well as the former's
relation to the assets it is assumed to price. For a given collection of test assets, conventional
investigations of the CAPM prediction based upon the relative mean-variance ef�ciency of a given
proxy estimate the linear relationship between the returns on those test assets and the return on the
proxy by a projection of the former onto the latter. This paper demonstrates that estimating such a
projection equation is not without loss of generality. The returns to nontraded assets and the returns
to human capital are omitted from common "market"-based proxies. The extent to which these
returns correlate with a given proxy will determine the extent to which innovations to the linear
equation describing returns to the test assets conditional on the proxy return will tend to covary
with the proxy return. The resulting structural equation will necessarily differ from the projection
equation. A novel estimator is proposed for this structural equation that does not require outside
instruments. This estimator is then used to show that the proposed test of relative mean-variance
ef�ciency built upon the aforementioned structural equation differs in economically signi�cant
ways from competing tests based upon the projection equation. In particular, the competing tests
over-reject the CAPM prediction because these tests ignore the effects of omitted components from
the market return on the linear relationship between test asset returns and the proxy return.
An extension of the pricing restriction implied by a mismeasured market return to conditional

moments separates the beta measured against a proxy return into a constant and a time-varying
component. Time-variation in the second component is sourced to securities omitted from the
proxy. Measuring this time-variation is central to evaluating the performance of a conditional
CAPM where movements in beta signi�cant to the pricing of expected returns are caused by mis-
measurement of the market return. The estimator described in section 4 treats the parameters
governing the conditional covariance matrix as nuisance parameters and only estimates composite
functions of these parameters. Given the speci�cation of �t (the term effecting time-variation in
beta measured against the proxy return) in Proposition 3, a complete treatment of the conditional
covariance between the market model residuals and the proxy return as well as the conditional
variance of the proxy return is necessary to render the result of Propostion 3 testable. Future re-
search will develop such an estimator while maintaining the assumption of semi-strong GARCH.
As a result, the estimator will continue to be based upon the autocorrelation process of the squares
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and cross-products of the structural errors to the triangular system. With the aid of this estimator,
the performance of the conditional pricing restriction in Proposition 3 as measured by � will be
compared against (1) the unconditional pricing restriction of Proposition 1 and (2) alternative pric-
ing models like the three-factor model of Fama and French (1993), which can be readily stated in
the terms of Proposition 2 in Shanken (1987).
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Appendix A
Lemma 1 Consider the structural model in (5) and the linear projection in (7). Then

Cov [eet; emt]0��1ee Cov [eet; emt] � �2 [mt]
�
1� �2

�
where �ee is theN �N covariance matrix of eet, and � is the correlation betweenmt and rpt.

Proof. Since (7) describes a linear projection of mt onto rpt, b =
Cov[rpt; mt]
�2[rpt]

and �2 [emt] =

�2 [mt] (1� �2). Consider regressing emt on eet. The explained variance from that regression is
Cov [eet; emt]0��1ee Cov [eet; emt], which cannot be greater than �2 [mt] (1� �2), the total variance
of emt.

Proof of Proposition 1 Substitution of (5) into the right-hand-side of (1) produces

Cov [rt; mt] = �Cov
�
rpt; mt

�
+ Cov [eet;mt] : (47)

Given (7),

Cov [eet; mt] =

 
Cov

�eet; rpt�
�2
�
rpt
� !

Cov
�
rpt; mt

�
+ Cov [eet; emt] : (48)

Combining (47) and (48) produces

Cov [rt; mt] = (� + �)Cov
�
rpt; mt

�
+ Cov [eet; emt] ;

where � is de�ned in (10). Substituting the result into (1) grants the following inequality,

d0��1ee d � �2 [mt]
�
1� �2

�
(49)

where
d = E [rt]� (� + �)Cov

�
rpt; mt

�
: (50)

Next, note that given (7) and (9),

�2 [mt] = �2p + �2 [emt] :

The coef�cient of determination from (7) is, therefore, �2p
�2[mt]

. Recall that � = Cov[mt; rpt]
�[mt]�[rpt]

.
Given that (1) also holds for the proxy return,

� =
E
�
rpt
�

� [mt]�
�
rpt
� = �p

� [mt]
: (51)

As a result, the right-hand-side of (49) equals �2p(��2 � 1). Finally, (50) can be rede�ned as
E [rt]� (� + �)E

�
rpt
�
.�
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Proof of Corollary 1 Given (2) and (51), � = �p
�m
. Substituting (4) into this result produces

� =
E
�
rpt
�

�c + E
�
rpt
� ; (52)

from which follows the statement that � = 1 if and only if �c = 0. If � = 1, then d0�
�1eet d = 0

in (11). Since �c = 0, � = 0 in (10), and d = Et [rt]� �Et
�
rpt
�
. From (5) then follows that

d = �.�

Proof of Corollary 2 Let
rt = �p + �prpt + ept (53)

be a multivariate linear projection of rt onto rpt, where �p is an alpha proxy, �p is a beta
proxy, and ept is a projection error. Then

�p = E [rt]� �pE
�
rpt
�

(54)

�p =
Cov

�
rt; rpt

�
�2
�
rpt
�

Substitution of (5) into the expression for �p yields the following relationships between the
parameters in (53) and the structural parameters in (5):

�p = 
 � �E
�
rpt
�

(55)
�p = � + �

where � is de�ned by (10). Given these relationships,

ept = rt � �p � �prpt = eet � �erpt
where erpt = rpt � E

�
rpt
�
. It then follows that

�ep = �ee � Cov
�eet; erpt�Cov �eet; erpt�0

�2
�erpt� (56)

since given the de�nition of erpt, Cov �eet; rpt� = Cov
�eet; erpt� and �2 �rpt� = �2

�erpt�.
Substitution of the expression for eet in (6) into (56) produces

�ee � �ep =
0@Cov

he�t; erpti
�
�erpt�

1A2

��0: (57)

In general, there exists an x such that �0x = 0. Let y = �0x. Then y0y � 0.�
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Appendix B
Identi�cation of the Triangular System

Assumption A1: Ht is positive de�nite almost surely.

Parameterize Ht as

Ht = C 0oCo +
2P

k=1

A0ko�t�1�
0
t�1Ako +

2P
k=1

B0
koHt�1Bko (58)

Co =

�
c11o 0
c21o c22o

�
A1o =

�
a11;1o 0
0 a22;1o

�
; A2o =

�
a11;2o 0
0 0

�
B1o =

�
b11;1o 0
0 b22;1o

�
; B2o =

�
b11;2o 0
0 0

�
:

The parameters c11o, c22o, a22;1o, a11;2o, b22;1o, and b11;2o are strictly positive. (58) is a bivariate
diagonal BEKKmodel. This model satis�es A1 under very weak conditions. Applying the vech (�)
operator to both sides of (58) and then simplifying produces (22), where

eCo =
�
c211o + c221o c21oc22o c222o

�0
; (59)

Ao =

24 a211;1o + a211;2o 0 0
0 a11;1oa22;1o 0
0 0 a222;1o

35 ;
and Bo is de�ned analogously to Ao in terms of the elements in B1o and B2o.

Assumption A2: E [XtX
0
t] and E [XtY

0
t ] are �nite and identi�ed from the data. E [XtX

0
t] is non-

singular.

Assumption A3: (i) In (20), the eigenvalues of Ao + Bo are less than one in modulus. (ii) Let
aij;o be the element in the ith row and jth column of the matrix Ao, and similarly de�ne bij;o.
a33;o + b33;o 6= a22;o + b22;o.

A2 identi�es the reduced form residuals from (18) and (19) as

Ri;t = Yi;t �X 0
tE [XtX

0
t]
�1
E
�
XtYi;t

�
; i = 1; 2:

A3(i) de�nes ht in (20) (or, equivalently, Ht in (58)) as mean stationary according to Proposition
2.7 of Engle and Kroner (1995). A3(ii) preserves the off-diagonal structure of the reduced form
GARCH model necessary for identi�cation as illustrated by (24).
(20) implies that

et = ht + !t
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whereE
�
!t j St�1

�
= 0 andE

�
!t!

0
s j St�1

�
= 0 8 s 6= t. Let et =

�
�1;t�2;t �22;t

�0, and similarly
de�ne ht and !t such that

et = ht + !t:

Assumption A4: (i)E
�
!t!

0
t

�
= �! <1. (ii) De�neCov

�
et; et�1

�
� E

h
(et � �e)

�
et�1 � �e

�0i.
Cov

�
et; et�1

�
is nonsingular if either a11;1o or b11;1o is nonzero.

Given A4(i), !t is covariance stationary. Lemma 2 demonstrates that A3(i) and A4(i) together
determine et to be covariance stationary. Note that if a11;1o = b11;1o = 0, then Cov

�
et; et�1

�
is

singular.

Lemma 2 Given A3(i) and A4(i), et is covariance stationary.

Proof. Given the de�nitions of et and ht, it follows from (20) that

ht = Co + Aoet�1 +Boht�1: (60)

Recall that Ao is a 2� 2 diagonal matrix formed from the elements a22;o and a33;o in Ao (see (20))
and similarly for Bo. Recursive substitution into (60) produces

ht =
1P
i=1

B
i�1
o

�
Co + Aoet�i

�
: (61)

Following the steps outlined in the proof to Proposition 2.7 of Engle and Kroner (1995), (61) can
be used to show that

Et��et =
h
I +

�
Ao +Bo

�
+ � � �+

�
Ao +Bo

���2i
Co+

�
Ao +Bo

���1 1P
i=1

B
i�1
o

�
Co + Aoet�i��+1

�
where Et�� is the expectations operator conditional on the information set St�� . For a square
matrix Z, it is well known that Z� ! 0 as � !1 if and only if the eigenvalues of Z are less than
one in modulus. This same condition grants (I + Z + � � �+ Z��1)! (I � Z)�1 as � !1 for the
appropriately sized identity matrix I . Given A3(i), therefore, Et��et

p!
�
I �

�
Ao +Bo

���1
Co(as

� !1).
Since et = ht + !t, where E

�
!t j St�1

�
= 0, given A4(i),

E
h
ete

0

t

i
= E

h
hth

0

t

i
+ �!:

Let �o =
�
I �

�
Ao +Bo

���1
Co.

E
h
hth

0

t

i
= �o + AoE

h
ht�1h

0

t�1

i
A
0

o + Ao�!A
0

o + AoE
h
ht�1h

0

t�1

i
B

0

o (62)

+BoE
h
ht�1h

0

t�1

i
A
0

o +BoE
h
ht�1h

0

t�1

i
B

0

o
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where �o = CoC
0

o +
�
Ao +Bo

�
�oC

0

o + Co�
0
o

�
Ao +Bo

�0
. Applying the vec (�) operator to (62)

and simplifying yields

vec
�
E
h
hth

0

t

i�
= �o + (Do) vec

�
E
h
ht�1h

0

t�1

i�
+
�
Ao 
 Ao

�
vec (�!)

= [I +Do]
�
�o +

�
Ao 
 Ao

�
vec (�!)

�
+
�
D2
o

�
vec
�
E
h
ht�2h

0

t�2

i�
=

�
I +Do +D2

o

� �
�o +

�
Ao 
 Ao

�
vec (�!)

�
+
�
D3
o

�
vec
�
E
h
ht�3h

0

t�3

i�
= : : :

=
�
I +Do + � � �+D��1

o

� �
�o +

�
Ao 
 Ao

�
vec (�!)

�
+ (D�

o ) vec
�
E
h
ht��h

0

t��

i�
where Do =

�
Ao +Bo

�


�
Ao +Bo

�
. Given A3(i), the eigenvalues of Do are less than one

in modulus, granting that vec
�
E
h
hth

0

t

i�
converges to [I �Do]

�1 ��o + �Ao 
 Ao
�
vec (�!)

�
as

� !1.
Note that

Cov
�
et; et��

�
= E

h
ete

0

t��

i
� �o�

0

o

Consider the case where � = 1.

E
h
ete

0

t�1 j St�1
i
= Coe

0

t�1 + Aoet�1e
0

t�1 +Boht�1e
0

t�1:

By iterated expectations,

E
h
ete

0

t�1

i
= Co�

0

o +
�
Ao +Bo

�
�
h
+ Ao�!

and, as a result,

Cov
�
et; et�1

�
=
�
Co � �o

�
�
0

o +
�
Ao +Bo

�
�
h
+ Ao�!

where �
h
= E

h
hth

0

t

i
. Next, consider the case where � � 2.

E
�
ht j St��

�
= E

�
Co + Aoet�1 +Boht�1 j St��

�
= Co +

�
Ao +Bo

�
E
�
ht�1 j St��

�
=

�
I +

�
Ao +Bo

��
Co +

�
Ao +Bo

�2
E
�
ht�2 j St��

�
= : : :

=
h
I +

�
Ao +Bo

�
+ : : :+

�
Ao +Bo

���1i
Co +

�
Ao +Bo

���1 �
Aoet�� +Boht��

�
=

�
I �

�
Ao +Bo

���
�o +

�
Ao +Bo

���1 �
Aoet�� +Boht��

�
:
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By iterated expectations,

E
h
ete

0

t��

i
= E

h
E
h
ete

0

t�� j St��
ii

= E
h
E
�
ht j St��

�
e
0

t��

i
=

�
I �

�
Ao +Bo

���
�o�

0

o +
�
Ao +Bo

���1 h�
Ao +Bo

�
E
h
ht��h

0

t��

i
+ AoE

h
!t��!

0

t��

ii
:

As a result,

Cov
�
et; et��

�
=
�
Ao +Bo

���1 h�
Ao +Bo

� �
�
h
� �o�

0

o

�
+ Ao�!

i
(63)

which converges to zero as � !1, since
�
Ao +Bo

���1 ! 0 (as � !1).

Proposition 2 Given A1�A4 for the model of (18) and (19), the structural parameters �1o, �2o,
and 
o are identi�ed.

Proof. Given A2, �2o = E [XtX
0
t]
�1E

�
XtY2;t

�
. If either a11;1o or b11;1o is nonzero as in A3(ii),

then E
�
�1;t�2;t j St�1

�
is time-varying. In this case, consider Cov

�
et; et��

�
= Cov

�
ht; et��

�
.

From (63), it follows that

Cov
�
et; et��

�
=
�
Ao +Bo

���1
Cov

�
et; et�1

�
: (64)

Given (21), let rt be the reduced form et. Then the reduced form of (64) when � = 2 is

Cov
�
rt; rt�2

�
=
�
Aro +Bro

�
Cov

�
rt; rt�1

�
; (65)

where the relationship between Ar0 and Ar0 in (22) is equivalent to the relationship between Ao
in (60) and Ao in (20). An analogous relationship exists between Bro and Bro. Identi�cation of
Aro +Bro follows from the nonsingularity of Cov

�
et; et�1

�
. 
o is then identi�ed as (26).

Next, consider the case where a11;1o = b11;1o = 0. De�ne Zt�1 =
�
�22;t�1 � � � �22;t�l

�0 for
�nite l � 1. Since E

�
�1;t�2;t j St�1

�
= c21;0oc22;0o, it follows that

Cov
�
�1;t�2;t; Zt�1

�
= 0: (66)

From (21), �1;t = R1;t �R2;t
o and R2;t = �2;t. Substitution of these results into (66) produces

Cov
�
R1;t�2;t; Zt�1

�
= Cov

�
�22;t; Zt�1

�

o:

Let 
 = Cov
�
�22;t; Zt�1

�
, and note that 
 6= 0 given (20). Then 
o is identi�ed as 
o =

(
0
)�1

0
Cov

�
R1;t�2;t; Zt�1

�
.

Finally, given identi�cation of 
o, �1o is identi�ed as �1o = E [XtX
0
t]
�1E

�
Xt

�
Y1;t � Y2;t
o

��
.
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Proposition 2 identi�es (18) and (19) given the nuisance parameters in Co and �o. A complete
treatment of (20) is not necessary to identify the triangular model. Note that the moment conditions
in (30) cover both the case where A3(ii) holds as well as the case where a11;1o = b11;1o = 0.

Corollary 3 From (28),
E [et � �o] = 0: (67)

From (29),

E
h
(et � �o)

�
et�2 � �o

�0 � �o (et � �o)
�
et�1 � �o

�0i
= 0: (68)

Stack the moments of (27), (67), and vec ((68)) into a single vector U . Let

 = f
1; 
2; �; c21; c22; �11; �22g 2 	;

and de�ne  o as the true value of  . Then E [U ] = 0 is uniquely satis�ed at  =  o.

Proof. (27) identi�es the reduced form residuals Ri;t, i = 1; 2: Given (21), substituting these
residuals into (67) and (68) produces (65). The result that E [U ] = 0 is uniquely satis�ed at
 =  o then follows from Proposition 2.
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Table 1A

Summary statistics for size, B/M, and momentum portfolios, 10/6/67 - 9/25/87. The portfolio return series are measured
weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-
of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is
the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are
constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5�5 sorts with breakpoints determined
by NYSE quintiles). "Small" is the average of the �ve low-market-cap portfolios, "Mid" the average of the �ve medium-market-
cap portfolios, and "Big" the average of the �ve large-market-cap portfolios. "Value" is the average of the �ve high-B/M portfolios,
"Neutral" the average of the �ve middle-B/M portfolios, and "Growth" the average of the �ve low-B/M portfolios. Finally,
"Losers" is the average of the �ve low-return-sorted portfolios, "Neutral" the average of the �ve middle-return-sorted portfolios,
and "Winners" the average of the �ve high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.103 0.120 0.075 0.169 0.108 0.023 -0.034 0.101 0.198

stdev 2.31 2.14 2.03 2.08 1.96 2.64 2.72 1.99 2.44

skew -0.33 -0.20 0.11 -0.21 -0.18 -0.19 0.32 -0.10 -0.58

kurt 5.12 4.80 4.83 5.18 4.70 4.71 5.84 5.22 4.95

Panel B: Alpha Proxy

est 0.045 0.060 0.016 0.113 0.053 -0.053 -0.106 0.045 0.132

std errora 0.039 0.024 0.012 0.028 0.021 0.025 0.038 0.020 0.031

Notes:
aHeteroskedasticity consistent
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Table 1B

Test results for size, B/M, and momentum portfolios, 10/6/67 - 9/25/87. Projection errors are the residuals from OLS
regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns
to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken
(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative
ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports
the CAPM at a 5% signi�cance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is
also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown
distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with
unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew 0.23 0.22 0.09 0.39 0.48 0.11 0.98 0.39 -0.70

kurt 5.08 5.85 4.15 5.76 8.19 4.45 7.95 5.32 6.83

Panel D: Structural errors

skew 0.17 0.23 0.00 0.40 0.47 0.10 0.59 0.30 -0.85

kurt 5.67 5.81 5.68 5.99 8.15 4.41 5.97 4.99 6.89

Panel E: GRSb, c

Proxy Sharpe ratio:

0.22 0.565 0.277 0.236

0.52 0.855 0.570 0.504

0.86 0.939 0.753 0.694

1.00 0.953 0.800 0.746

Panel F: BPCb, c

Proxy Sharpe ratio:

0.22 0.410 0.272 0.260

0.52 0.737 0.551 0.530

0.86 0.892 0.737 0.715

1.00 0.924 0.787 0.766

unknown 0.581 0.429 0.398

Panel G: BPSb, c

Proxy Sharpe ratio:

0.22 0.409 0.271 0.242

0.52 0.741 0.552 0.511

0.86 0.896 0.738 0.706

1.00 0.927 0.787 0.761

unknown 0.590 0.440 0.388

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy
Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along
with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the
market return.
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Table 2A

Summary statistics for size, B/M, and momentum portfolios, 11/6/87 - 9/28/07. The portfolio return series are measured
weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-
of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is
the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are
constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5�5 sorts with breakpoints determined
by NYSE quintiles). "Small" is the average of the �ve low-market-cap portfolios, "Mid" the average of the �ve medium-market-
cap portfolios, and "Big" the average of the �ve large-market-cap portfolios. "Value" is the average of the �ve high-B/M portfolios,
"Neutral" the average of the �ve middle-B/M portfolios, and "Growth" the average of the �ve low-B/M portfolios. Finally,
"Losers" is the average of the �ve low-return-sorted portfolios, "Neutral" the average of the �ve middle-return-sorted portfolios,
and "Winners" the average of the �ve high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.169 0.176 0.157 0.209 0.183 0.103 0.041 0.172 0.315

stdev 2.16 2.09 1.92 1.88 1.83 2.61 2.94 1.74 2.60

skew -1.04 -0.64 -0.29 -0.91 -0.75 -0.75 0.03 -0.60 -0.89

kurt 11.76 6.64 4.97 9.24 6.66 9.05 7.00 6.72 10.96

Panel B: Alpha Proxy

est 0.049 0.040 0.027 0.094 0.063 -0.070 -0.129 0.059 0.148

std errora 0.044 0.029 0.023 0.032 0.025 0.034 0.056 0.025 0.039

Notes:
aHeteroskedasticity consistent
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Table 2B

Test results for size, B/M, and momentum portfolios, 11/6/87 - 9/28/07. Projection errors are the residuals from OLS
regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns
to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken
(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative
ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports
the CAPM at a 5% signi�cance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is
also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown
distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with
unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew -0.04 0.14 1.41 -0.08 0.17 -0.07 1.13 0.89 -0.25

kurt 7.56 6.06 19.54 6.68 6.70 7.71 9.22 11.49 6.83

Panel D: Structural errors

skew -0.43 -0.33 -0.07 -0.75 -0.63 -0.28 1.07 -0.36 -0.72

kurt 9.72 6.68 5.05 10.20 6.59 8.36 9.24 7.39 10.96

Panel E: GRSb, c

Proxy Sharpe ratio:

0.22 1.000 0.406 0.258

0.52 1.000 0.730 0.540

0.86 1.000 0.870 0.727

1.00 1.000 0.899 0.776

Panel F: BPCb, c

Proxy Sharpe ratio:

0.22 0.639 0.397 0.277

0.52 0.926 0.698 0.554

0.86 0.997 0.852 0.745

1.00 1.000 0.888 0.796

unknown 1.000 0.824 0.679

Panel G: BPSb, c

Proxy Sharpe ratio:

0.22 0.857 0.442 0.319

0.52 1.000 0.739 0.622

0.86 1.000 0.878 0.805

1.00 1.000 0.908 0.851

unknown 1.000 0.841 0.745

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy
Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along
with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the
market return.
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Table 3A

Summary statistics for size, B/M, and momentum portfolios, 10/7/77 - 9/25/87. The portfolio return series are measured
weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-
of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is
the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are
constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5�5 sorts with breakpoints determined
by NYSE quintiles). "Small" is the average of the �ve low-market-cap portfolios, "Mid" the average of the �ve medium-market-
cap portfolios, and "Big" the average of the �ve large-market-cap portfolios. "Value" is the average of the �ve high-B/M portfolios,
"Neutral" the average of the �ve middle-B/M portfolios, and "Growth" the average of the �ve low-B/M portfolios. Finally,
"Losers" is the average of the �ve low-return-sorted portfolios, "Neutral" the average of the �ve middle-return-sorted portfolios,
and "Winners" the average of the �ve high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.221 0.226 0.151 0.257 0.205 0.140 0.077 0.184 0.316

stdev 1.96 1.98 1.99 1.79 1.83 2.49 2.31 1.82 2.43

skew -1.08 -0.52 0.04 -0.91 -0.54 -0.30 0.36 -0.39 -0.87

kurt 7.96 5.99 4.51 7.81 5.59 4.91 5.72 5.61 6.59

Panel B: Alpha Proxy

est 0.091 0.081 -0.002 0.130 0.068 -0.045 -0.081 0.048 0.141

std errora 0.048 0.031 0.016 0.035 0.024 0.034 0.048 0.025 0.044

Notes:
aHeteroskedasticity consistent
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Table 3B

Test results for size, B/M, and momentum portfolios, 10/7/77 - 9/25/87. Projection errors are the residuals from OLS
regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns
to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken
(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative
ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports
the CAPM at a 5% signi�cance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is
also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown
distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with
unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew -0.71 -0.35 0.20 -0.77 -0.63 -0.13 0.95 -0.15 -0.97

kurt 7.00 4.90 3.72 7.64 5.57 3.88 8.35 5.06 7.10

Panel D: Structural errors

skew -0.77 -0.29 0.20 -1.06 -0.76 -0.15 1.08 -0.11 -0.55

kurt 7.39 4.58 3.69 9.29 6.23 4.03 9.26 4.91 5.50

Panel E: GRSb, c

Proxy Sharpe ratio:

0.22 0.437 0.244 0.352

0.52 0.759 0.518 0.671

0.86 0.888 0.707 0.831

1.00 0.913 0.758 0.867

Panel F: BPCb, c

Proxy Sharpe ratio:

0.22 0.291 0.220 0.286

0.52 0.590 0.465 0.577

0.86 0.785 0.660 0.770

1.00 0.835 0.719 0.821

unknown 0.772 0.614 0.733

Panel G: BPSb, c

Proxy Sharpe ratio:

0.22 0.353 0.231 0.316

0.52 0.645 0.483 0.644

0.86 0.815 0.672 0.849

1.00 0.872 0.728 0.899

unknown 0.810 0.644 0.795

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy
Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along
with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the
market return.

39



Table 4A

Summary statistics for size, B/M, and momentum portfolios, 11/6/87 - 9/26/97. The portfolio return series are measured
weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-
of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is
the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are
constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5�5 sorts with breakpoints determined
by NYSE quintiles). "Small" is the average of the �ve low-market-cap portfolios, "Mid" the average of the �ve medium-market-
cap portfolios, and "Big" the average of the �ve large-market-cap portfolios. "Value" is the average of the �ve high-B/M portfolios,
"Neutral" the average of the �ve middle-B/M portfolios, and "Growth" the average of the �ve low-B/M portfolios. Finally,
"Losers" is the average of the �ve low-return-sorted portfolios, "Neutral" the average of the �ve middle-return-sorted portfolios,
and "Winners" the average of the �ve high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.172 0.220 0.221 0.242 0.217 0.149 0.075 0.207 0.336

stdev 1.54 1.58 1.71 1.47 1.43 1.95 2.05 1.37 1.95

skew -0.51 -0.44 -0.10 -0.30 -0.50 -0.35 0.15 -0.48 -0.51

kurt 6.51 5.36 4.14 5.26 5.58 4.91 5.95 5.91 4.39

Panel B: Alpha Proxy

est 0.029 0.039 0.008 0.079 0.047 -0.074 -0.134 0.044 0.112

std errora 0.048 0.032 0.017 0.033 0.023 0.040 0.054 0.023 0.038

Notes:
aHeteroskedasticity consistent
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Table 4B

Test results for size, B/M, and momentum portfolios, 11/6/87 - 9/26/97. Projection errors are the residuals from OLS
regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns
to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken
(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative
ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports
the CAPM at a 5% signi�cance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is
also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown
distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with
unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew 0.24 0.09 0.14 0.88 -0.02 -0.16 0.74 0.29 -0.15

kurt 5.07 3.95 3.17 5.99 5.32 3.83 5.64 5.29 3.81

Panel D: Structural errors

skew -0.20 -0.08 0.11 0.86 -0.48 -0.16 0.60 -0.27 -0.18

kurt 6.50 4.74 3.25 6.36 6.13 3.69 6.55 7.02 3.95

Panel E: GRSb, c

Proxy Sharpe ratio:

0.22 1.000 0.388 0.165

0.52 1.000 0.712 0.372

0.86 1.000 0.858 0.553

1.00 1.000 0.889 0.611

Panel F: BPCb, c

Proxy Sharpe ratio:

0.22 0.554 0.310 0.174

0.52 0.892 0.597 0.385

0.86 1.000 0.780 0.562

1.00 1.000 0.828 0.619

unknown 1.000 0.941 0.714

Panel G: BPSb, c

Proxy Sharpe ratio:

0.22 0.636 0.366 0.172

0.52 0.971 0.661 0.383

0.86 1.000 0.826 0.562

1.00 1.000 0.866 0.619

unknown 1.000 0.931 0.690

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy
Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along
with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the
market return.
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Table 5A

Summary statistics for size, B/M, and momentum portfolios, 10/3/97 - 9/28/07. The portfolio return series are measured
weekly (in percentage terms) so that relatively high frequency data is utilized (to estimate higher moments) that reduces day-
of-the-week and weekend effects as well as the effects of nonsynchronus trading and bid-ask bounce. The proxy return is
the CRSP market-value-weighted index of all securities on the NYSE, AMEX, and NASDAQ exchanges. Security returns are
constructed from the 25 size-B/M portfolios and the 25 size-momentum portfolios (each 5�5 sorts with breakpoints determined
by NYSE quintiles). "Small" is the average of the �ve low-market-cap portfolios, "Mid" the average of the �ve medium-market-
cap portfolios, and "Big" the average of the �ve large-market-cap portfolios. "Value" is the average of the �ve high-B/M portfolios,
"Neutral" the average of the �ve middle-B/M portfolios, and "Growth" the average of the �ve low-B/M portfolios. Finally,
"Losers" is the average of the �ve low-return-sorted portfolios, "Neutral" the average of the �ve middle-return-sorted portfolios,
and "Winners" the average of the �ve high-return-sorted portfolios.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Growth

Panel A: Excess returns

mean 0.166 0.133 0.094 0.177 0.150 0.057 0.007 0.138 0.293

stdev 2.63 2.49 2.11 2.22 2.16 3.12 3.61 2.04 3.12

skew -1.04 -0.60 -0.36 -1.00 -0.74 -0.76 0.03 -0.57 -0.90

kurt 9.85 5.62 5.00 8.53 5.78 7.96 5.51 5.85 9.91

Panel B: Alpha Proxy

est 0.087 0.048 0.021 0.107 0.077 -0.052 -0.102 0.070 0.190

std errora 0.072 0.048 0.038 0.054 0.043 0.054 0.096 0.043 0.067

Notes:
aHeteroskedasticity consistent
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Table 5B

Test results for size, B/M, and momentum portfolios, 10/3/97 - 9/28/07. Projection errors are the residuals from OLS
regressions of security returns on the proxy return. Structural errors are the residuals from linear equations relating security returns
to the proxy return, where the residual from each equation and the proxy return is allowed to covary. Gibbons, Ross, and Shanken
(1989), or GRS, Bootstrap Proposition 1 constant covariance (BPC), and Bootstrap Proposition 1 stochastic (BPS), are alternative
ways of determining the maximum correlation between the CRSP value-weighted proxy return and the market return that supports
the CAPM at a 5% signi�cance level. GRS is based on the assumption that the projection errors are normally distributed. BPC is
also based on the projection errors, but assumes those errors to follow strong, univariate GARCH(1,1) processes with unknown
distributions. BPS is based on the assumption that the structural errors follow strong, univariate GARCH (1,1) processes with
unknown distributions.

Size B/M Momentum

Small Mid Large Value Neutral Growth Losers Draws Winners

Panel C: Projection errors

skew -0.11 0.16 1.15 -0.32 0.15 -0.02 1.09 0.81 -0.29

kurt 6.75 5.51 12.23 5.51 5.16 8.02 7.69 8.72 5.49

Panel D: Structural errors

skew -0.82 -0.44 -0.18 -1.01 -0.70 -0.46 0.89 -0.46 -0.84

kurt 9.33 5.62 5.29 9.22 5.59 8.06 7.13 6.11 10.07

Panel E: GRSb, c

Proxy Sharpe ratio:

0.22 1.000 1.000 0.469

0.52 1.000 1.000 0.788

0.86 1.000 1.000 0.904

1.00 1.000 1.000 0.926

Panel F: BPCb, c

Proxy Sharpe ratio:

0.22 0.648 0.427 0.337

0.52 0.955 0.766 0.645

0.86 1.000 0.928 0.836

1.00 1.000 0.960 0.883

unknown 0.910 0.714 0.579

Panel G: BPSb, c

Proxy Sharpe ratio:

0.22 0.771 0.434 0.391

0.52 1.000 0.798 0.741

0.86 1.000 0.975 0.933

1.00 1.000 1.000 0.974

unknown 0.966 0.655 0.597

Notes:
bMaximum correlations are reported that support the CAPM prediction.
cValues for the proxy Sharpe ratio are taken from Shanken (1987). These values are annualized. 0.52 is the expected value;

0.22 and 0.86 are - 1 and + 2 standard deviations away from this expected value, respectively. 1.00 is a value for the proxy
Sharpe ratio that is greater than any conceivable true value. Unknown means that the proxy Sharpe ratio is bootstrapped along
with every other estimated quantity in the expression determining an upper bound for the correlation between the proxy and the
market return.
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TABLE 6

Simulation evidence for the size of the three relative ef�ciency tests considered under the null hypothesis that the correlation
of the proxy return with the true market return is at least 90%. Errors to the excess security returns and excess proxy return
follow semi-strong GARCH(1,1) processes with standardized Gamma(2,1) innovations. Parameters for the GARCH processes
are the sample estimates obtained from the B/M portfolios measured over the weekly period 11/6/87 - 9/28/07 that are robust
to endogeneity of the proxy return. These parameter estimates are termed the "true" values. The Gamma(2,1) distribution is
chosen because, when combined with these GARCH parameters, this distribution produces errors with unconditional skewness
and kurtosis measures comparable to those described under Panel D for the B/M portfolios of Table 2B. Betas for the excess
security returns are the sample estimates from the same time period. Alpha proxies for each of the excess security returns are
calibrated from the sample returns so that (1) they are all equal and (2) they imply a 90% correlation between the proxy and the
market return. For the GRS test, the Sharpe Performance Measure for the proxy return is assumed to be known and is set equal
to the estimate from the original sample. For the BPC and BPS tests, the Sharpe Performance Measure is treated as unknown.
For all three test statistics, the simulations are conducted across 500 trials with excess return series of 1000 observations each.
When constructing the individual excess return series for each trial, the �rst 200 observations are dropped to avoid initialization
effects. For the BPC and BPS statistics, within each simulation trial is a bootstrap of the maximum correlation between the proxy
and market return conducted over 250 repetitions. In each case, the bootstrap routines use parameter estimates from the original
sample along with constant terms implied by the calibrated alpha proxies. Parameter estimates used in the BPC test assume that
innovations to the excess security returns are uncorrelated with the proxy return. Parameter estimates used in the BPS test are the
"true" values described above. The table reports rejection rates for the test statistics at 10%, 5%, and 1% signi�cance levels.

Size =

Statistic 0.10 0.05 0.01

GRS 0.180 0.112 0.038

BPC 0.114 0.082 0.026

BPS 0.084 0.050 0.016
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