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Abstract

Are housing prices predictable? If so, do households take into account it when making their

portfolio choices? We document the existence of housing returns predictability in the US at

the aggregate and regional level. We study a model, in which housing prices are predictable

and adjustment costs must be paid when there is a housing transaction. We show that two

state variables affect the agent’s decisions: (i) his wealth-house ratio; and (ii) the time-varying

expected growth rate of housing prices. The agent buys (sells) his housing assets only when the

wealth-to-housing ratio reaches an optimal upper (lower) bound. These bounds are time-varying

and depend on the expected growth rate of housing prices. Finally, we use household level data

from the PSID and SIPP surveys to test and support the main implications of the model.
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1 Introduction

Housing plays an important role in the portfolio choice decisions of households because it accounts

for an important fraction of their wealth. However, several specific characteristics of housing make

portfolio choice decisions nontrivial. First, housing is a durable consumption good as well as an

investment asset. Second, moving to a new house involves high transaction costs; therefore, home-

owners would find it optimal not to frequently re-balance their position in housing as they would

with other investment assets. Third, housing returns present a certain degree of predictability. The

main contribution of this paper is to solve a portfolio choice problem that incorporates these three

particular characteristics of housing and to test its empirical implications. The paper provides a

first step towards understanding the existence of housing returns predictability and its qualitative

and quantitative impact on housing consumption and portfolio decisions subject to transaction

costs. This study has been articulated in four parts.

Firstly, we motivate and explore predictability in housing returns. We apply the approaches

for the analysis of stock returns predictability developed in Campbell and Cochrane (1999) and

Menzly, Santos, and Veronesi (2004) to the study of housing predictability. Our results show that

the rent-price ratio presents a strong predicting power of future housing returns. At U.S. aggregate

level, a 1% variation of rent-price ratio implies a 3.79% variation in a one-year horizon returns

over the period 1978 to 2001. For longer horizons, results are even stronger. As we increase the

horizon, the coefficient on the rent-price ratios forecasting future housing returns becomes higher

and more statistically significant. Similar results appear at the U.S. Census Macro Region level.

Furthermore, we find that housing price growth is more predictable than stock returns. Because

housing is a major component of wealth, our empirical findings suggest it is important to understand

how housing returns predictability affects households’ consumption and portfolio decisions.

Secondly, we introduce house returns predictability in a model that studies housing consumption

and portfolio choices of an agent in a partial equilibrium framework. We consider a housing market

subject to sizeable transaction costs in the sense that the agent incurs a cost when selling the

current house to buy a new one, making housing consumption lumpy. In essence, we generalize the

model in Grossman and Laroque (1990) (GL henceforth) assuming that the dynamics of housing
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prices are predictable.1 The Figure 1 depicts the pronounced cyclicality in US house prices over the

period from 1930 to 2007, and two boom periods stand out particularly markedly.2 First, around

the end of World War II, house prices rose by 60% from 1942 to 1947. Second, based on the Case-

Shiller US Home Price index, the annual rate of price change increased almost every year from

1998 to 2006, with a cumulative price increase of 85% during that period.3 A natural candidate to

capture regular switches between regimes of different housing price dynamics is a regime-switching

model.

Thirdly, we use a long time series of data to estimate the parameters of a two-regime process

that assumes that the expected growth of housing prices only takes two values, either low or high.

The two-regime model is a reduced form representation of the predictive power of the rent-to-

price ratio described above. We find that a model specification that allows the expected growth of

housing prices to switch only between two regimes captures sufficiently well the essential dynamics

of U.S. housing prices. We estimate a yearly growth rate of housing prices of 0.06% during the low

growth regimes and a growth rate of 8.89% during the high regimes. Our analysis also suggests that

housing prices are most often in a regime of low growth. Moreover, we estimate the same model

at U.S. Census Macro Region level using the repeat sales indexes constructed by the Office of

Federal Housing Enterprise Oversight (OFHEO). The estimated parameters are used as inputs for

the numerical resolution of our model. We develop relevant theoretical implications. Predictability

in housing returns results in a second state variable to the GL framework and implies a time varying

inaction region as the bounds shift over time and, as a consequence, a second state variable to the

GL framework. In addition to the wealth-to-housing ratio, the time varying expected growth rate

of housing prices also determines the optimal timing for re-balancing housing consumption.

Fourthly, we unveil some interesting implications of the model and test them with household

level data on consumption, wealth, housing values, and asset holdings available from the Panel
1Damgaard, Fuglsbjerg, and Munk (2003) generalize the GL setting allowing for both an perishable and a durable

good whose price follows a Geometric Brownian motion. Their general setting allows to study the relation between
perishable and durable consumption and the impact of the uncertainty of the durable good price and its correlation
with financial asset prices on portfolio behavior. Additionally, we consider predictability in housing returns and test
empirical implications of the model.

2We define boom in housing market as the time interval that includes the minimum number of periods with at
least three consecutive years of positive yearly returns on the Case-Shiller House Price Index (HPI) and at least one
year with return higher than 5%.

3Since Case and Shiller (1989) showed evidence of predictability in housing returns, the rate of return on the
Case-Shiller Home Price Index for U.S. home prices increased almost every year from 1991 to 2005, with a negative
rate of -8.04% in 1991 and a yearly return of +12.34% in 2005.
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Figure 1: Case&Shiller US Home Price Index (percentage change per annum) and
periods of real estate boom.

Study of Income Dynamics (PSID) from 1984 to 2007, and from the Survey of Income and Program

Participation (SIPP) of the U.S. Census Bureau from 1997 to 2005.4 We exploit the variation across

households at the time they move to a different house. The variable of interest is the wealth-to-

housing ratio of households right before a move. It allows us to identify the threshold levels that

trigger the re-optimization of the housing wealth. Not surprisingly, we find that the inaction region

does exist. Moreover, we find that there exists an upper bound in the wealth-to-housing ratio that

triggers the increase of housing holdings (i.e., “moving to a bigger house”). Similarly, there exists

a lower bound in the wealth-to-housing ratio that triggers the “moving to a smaller house”. More
4The SIPP collects income, asset and demographic information from a sample of approximately 20, 000 − 30, 000

households. The main advantages of the SIPP relative to PSID are its large sample size and detailed information
about covariates as well as its complete housing history. However, PSID covers a larger period for the variables that
we are interested. Additionally, the survey includes detailed questions about moving.
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interestingly, we also document time variation of the bounds using house price indexes at U.S.

State level. Households that moved to a bigger house in a period of expected high housing price

appreciation had an ex-ante wealth-house ratio that is significantly lower than those that moved

in a period of expected low appreciation. Hence, we provide evidence that we need to consider a

second state variable in addition to the variable wealth-to-housing ratio. This second state variable

is the time-varying expected growth rate of housing prices. It does not only affects the likelihood

of housing adjustment but, conditionally on adjustment taking place, it also affects the size of

housing adjustment. With respect to the asset holdings, the model predicts that agents with a

higher wealth-to-housing ratio hold a higher share of risky stock than those with a lower ratio. The

differences are larger in periods of high expected housing appreciation. However, because of the

sparsity of financial data and the dubious quality of the observed variables as proxy for risky stock

holdings, we find weak evidence of these facts. Nonetheless, results point in the right direction.

Our paper follows the literature that studies investment decision problems under fixed adjust-

ment costs.5 The model in Grossman and Laroque (1990) is a milestone in this literature. There

are two lines of research that depart from this seminal paper and are related to our paper. First,

the empirical part of our analysis is connected to the literature on (S,s) models, which focuses

on empirically investigating the inaction region and testing the GL model, such as Eberly (1994),

Attanasio (2000), Martin (2003) and Bertola, Guiso, and Pistaferri (2005). We are not aware of

previous papers who study of the joint effect of variability and predictability on the price of a

durable good, housing in our specific case. Second, our model and its main implications are related

to papers that focus on particular implications of portfolio choice in the presence of housing such as

Flavin and Yamashita (2002), Cocco (2005), Yao and Zhang (2005), Flavin and Nakagawa (2008),

Van Hemert (2008) and Stokey (2009b). This strand of literature assumes that housing prices

evolve stochastically following a random walk process.6 Flavin and Yamashita (2002) use mean

variance efficiency framework to examine the household’s portfolio problem when owner-occupied

housing is included in the set of available assets. The authors focus on the impact of the portfolio

constraint imposed by the consumption demand for housing on the household’s optimal holding of

risky stock, but they do not incorporate the house purchase decision as in Grossman and Laroque
5 See Stokey (2009a) for a treatment of stochastic control problems in presence of fixed adjustment costs.
6Specifically, Damgaard, Fuglsbjerg, and Munk (2003), Cocco (2005), Yao and Zhang (2005), Flavin and Nakagawa

(2008) and Van Hemert (2008) make this assumption.
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(1990). Cocco (2005) shows that investment in housing plays a crucial role in explaining the pat-

terns of PSID cross-sectional variation in the composition of wealth and level of stock holding. Due

to investment and housing price risk, younger and poorer homeowners have limited financial wealth

to invest in stocks. Yao and Zhang (2005) investigate household’s asset allocation and housing de-

cisions in a life-cycle model. Their model predicts that the housing investment has a negative effect

on stock market participation as in Cocco (2005). Chetty and Szeidl (2010) examine how portfolio

allocations change when households buy houses. They provide evidence that housing reduces the

amount households invest in risky stock substantially.7

The outline of the paper is structured as follows. Section 2 motivates and explores predictability

in housing returns. Section 3 introduces the model and summarizes the main theoretical implica-

tions. In section 4 we describe the data and present the parameters driving the housing prices

dynamics. In section 5 we use the results of the estimation exercise to solve the model and show

the main results. The inaction regions arise from the transaction costs and the time-varying bounds

arise from the predictability of housing returns. In section 6 we use PSID and SIPP data to test

the main implications arising from the model solution that were presented in section 3 (i.e., the

existence and characteristics of the bounds and the implications of these bounds on the portfolio

decisions of the households included in these panels.) Finally, section 7 concludes.

2 Predictability in Housing Markets

Are housing returns predictable? Campbell and Cochrane (1999), Menzly, Santos, and Veronesi

(2004), and Cochrane (2008) have explored the predictability of stock returns. Analogously, we

explore the forecasting power of the rent-to-price ratio –the equivalent of the dividend price ratio

for stocks. To understand why the price-rent ratio could play a role in explaining future returns,

we linearize the returns definition as in Campbell and Shiller (1988). Price-rent ratios only move

either if they forecast future returns, if they forecast future rent growth, or if there is a bubble.
7 Our paper is also related to the sizable literature that incorporates stock return’s predictability. Lynch and

Balduzzi (2000) examine the portfolio choice problem of an agent in the presence of stock returns predictability,
analyzing the re-balancing behavior when transaction costs are non zero. Brennan, Schwartz, and Lagnado (1997),
Barberis (2000), Kim and Omberg (1996) and Campbell and Viceira (1999) develop models that fall under the first
approach. They analyze the impact of myopic versus dynamic decision making when stock returns are predictable
but they abstract from considering the impact of transaction costs. Instead, in this paper, we analyze the impact of
housing, as a consumption and investment good, on portfolio choices in the presence of transaction costs on housing
and housing returns predictability.
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There is a bubble when the price-rent ratio grows at a faster rate than the discount rate. From the

definition of returns, we can write

Pt
Dt

= R−1
t+1

(
1 +

Pt+1

Dt+1

)
Dt+1

Dt
, (1)

where Pt is the housing price, Dt is the rent flow, and Rt represents returns at any time t. By

solving it forward iteratively, taking expectations,8 and subtracting the current dividend, we find

the following expression (lower case letters in logs)

pt − dt = α+ Et

∞∑
j=1

ρj−1 (∆dt+k − rt+j) + Et lim
j→∞

(pt+j − dt+j) . (2)

where α and ρ are constants.

Our analysis focuses on how future returns and rent growth rates are explained by current

rent-price ratios, in absence of bubbles.9 Equation (2) motivates the following return predictability

regression that consists on regressing returns on the lagged price-rent ratio, or the dividend growth

predictability, regressing rent growth on lagged price-rent ratio:

rt+1 − r̄ = κ0 + κr(pt − dt) + εrt+1∆dt+1 − d̄ = κ0 + κd(pt − dt) + εdt+1 (3)

where r̄, κ0, κr, d̄ and κd are constants, and εrt and εdt are error terms.

The price-rent ratios have been computed as in Campbell et al. (2009) using annualized quarterly

data from 1978 to 2001 on housing prices from OFHEO and rents from the Bureau of Labor

Statistics (BLS). We use the annualized 3 month Treasury Bill as a risk free rate to obtain excess

returns. Housing returns, Rht+1, are defined as the change in the housing price index,
Pht+1

Pht
, plus the

rent-price ratio adjusted by the price growth,
Dht+1

Pht
:

Rht+1 =
P ht+1 +Dh

t+1

P ht
=
P ht+1

P ht
+
Dh
t+1

P ht+1

P ht+1

P ht
. (4)

Additionally, we compute predictability regressions with an alternative data source: we use
8Expression (2) holds exactly, without expectations.
9Note that if the price dividend ratio is stationary, or bounded, or it does not explode faster than ρ−1, then the

last term disappears and we are back to equation (1). If we impose that there are no bubbles, this third term would
be zero.
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rent expenditures from the National Income and Product Accounts (NIPA) and market value of

residential real estate from the Flow of Funds (item B.100) provided by the Federal Reserve Board.

Returns are computed with changes in the market value of residential real estate, subtracting

population growth. We deflate returns by the Consumer Price Index excluding shelter. Robustness

results with this alternative data set and different sample selections are provided in the appendix A.

Favilukis, Ludvigson, and Nieuwerburgh (2010) calibrate a general equilibrium model with housing

using Flow of Funds and NIPA data. Their model generates a cyclical behavior of price-rent ratios

comparable to the dynamics observed in recent data. According to their model, the ratio also

predicts future housing returns and not future rents growth, which is consistent with our finding

in the data.

Table 1 presents predictability regressions results. We regress future housing returns, at different

horizons, on current rent-price ratios. We observe that the rent-price ratio has a strong predicting

power of future housing returns. The predicting power of rent-price ratios is stronger than that of

price-dividends ratio in predicting stock returns. At the aggregate level, a 1% variation of rent-price

ratio implies a 3.97% variation in a one-year horizon returns. For longer horizons, results are even

stronger. As we increase the horizon, the coefficient on the rent-price ratios, (dt − pt), forecasting

future housing returns becomes higher and more statistically significant.10 When forecasting 4 and

5 year returns, a 1% increase in rent-price ratios imply an increase of 41% and 46% in housing

returns respectively –at the aggregate level. Similar results appear at the U.S. Census Macro

Region level. We also find that housing price changes are more predictable than stock prices at

all horizons for this particular sample. Table 1 shows that stock returns predictability explained

by price-dividend ratios is less than half the predictability that we observe in housing returns. On

the right side of the table, it is shown that rents growth rates do not predict future returns. It is

the case for either housing or stock returns, reinforcing the idea of housing returns predictability

being due to movements in rent-price or dividend-price ratios respectively. The evidence presented

in table 1 and in the appendix A motivates the assumption of predictability in housing returns

and not in stock returns. We do observe evidence of stock return predictability to a lesser extent.
10The explanation for this phenomenon, in absence of the bubble term, is that the (dt − pt) ratios are highly per-

sistent. When estimating an AR(1) to rent-price ratios for the sample, we cannot reject non-stationarity, supporting
the idea of the bubble-like behavior during the last few years. On the other hand, for the trimmed data set, the
autocorrelation coefficient of the rent-price ratios series is 0.93 for annual data. Obviously this results in a larger R2

as well.
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Modeling stock returns with a predictable component results in an additional state variable. For

simplicity we abstract from doing so and we focus on the role of housing returns predictability in

portfolio choice and housing tenure decisions.

Table 1: Predictability of excess returns and dividends growth with rents-to-price ratios, 1-lags
Newey-West corrected standard errors. Data source: price-rent data from Morris Davis web site
from 1978 to 2000.

Excess Returns Dividend growth

Horizon κr t-stat R2 κd t-stat R2

USA

k=1 3.97 0.89 0.06 6.54 3.40 0.38
k=4 41.45 10.35 0.76 10.11 1.49 0.13
k=5 46.30 10.07 0.82 5.67 0.77 0.03

Midwest

k=1 1.29 0.42 0.01 2.53 1.70 0.22
k=4 28.92 3.30 0.43 7.64 2.34 0.27
k=5 38.03 4.40 0.53 7.21 2.10 0.22

Northeast

k=1 0.68 0.25 0.00 -0.97 -0.91 0.06
k=4 20.30 2.39 0.27 3.18 1.03 0.09
k=5 30.79 2.88 0.46 5.65 1.68 0.23

South

k=1 3.52 1.20 0.09 1.55 0.85 0.05
k=4 26.78 5.06 0.61 -2.25 -0.59 0.02
k=5 34.11 6.64 0.68 -4.30 -0.91 0.06

West

k=1 0.30 0.13 0.00 1.36 0.75 0.04
k=4 21.92 4.84 0.56 -5.97 -1.52 0.08
k=5 28.23 6.04 0.70 -10.61 -2.34 0.20

Stocks

k=1 3.92 2.65 0.08 -3.24 -2.07 0.05
k=4 17.71 3.77 0.27 -0.01 -0.84 0.00
k=5 20.39 4.31 0.28 0.00 0.04 0.00

Results are very similar at the Metropolitan Statistical Area (MSA) level. Interestingly enough,

the predictability results do not hold if we include the last period of house prices increase, or housing

bubble for the data set used in table 1. In the appendix, we show results with an alternative data

source for which predictability results hold also for the full sample. In the full sample, including

the last 7 years, price-rent ratios seem to follow non-stationary behavior. That implies that the

last term in equation (1) might not converge to zero fast enough. When growing expectations of

future prices is what explains current prices, little power is left for price-dividend ratios or dividend

growth to explain future price changes. Campbell, J.Y., S. Giglio, and C. Polk (2010) presents a
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similar argument justifying the exclusion of the recent years.11

3 The Model

The evidence in the previous section indicates that the expected value of housing price growth varies

through time and that the degree of housing returns predictability varies across the U.S. Census

Macro Regions. In this section, we describe a model with infrequent housing adjustment in the

presence of housing returns predictability. Our goal is to develop relevant qualitative implications

that we can test on data-set featuring extensive information on housing purchases and measures of

housing returns predictability.

We examine the consumption and portfolio choice of an agent in a continuous time economy

with a riskless asset, a risky asset and two consumption goods, a perishable and a durable good with

uncertain price evolution. Agents in our model have non-separable Cobb-Douglas preferences over

housing and non-housing goods. The agent derives utility over a trivial flow of services generated

by the house. This specification can be generalized as long as preferences are homothetic. For

simplicity, we focus on the Cobb-Douglas implications. The period utility function can be expressed

as:

u(Ct, Ht) =
1

1− γ (Cβt H
1−β
t )1−γ , (5)

where Ht is the service flow from the house (square unit size), Ct is other consumption, and

β, γ ∈ (0, 1). The agent has no bequest motive. The period by period budget constraint determines

that the agent spends his income in consumption of non-housing goods, changing the house size,

and investments for the following period in risky and safe assets. Income is composed by the returns

of previous investments and a deterministic endowment.

The stock of housing depreciates at a physical depreciation rate δ. If the agent does not buy or

sell any housing assets, the dynamics of the stock of housing follows the process:

dHt = −δHtdt, (6)

for a given initial condition H0 = H̄. We assume that the square foot price of the house, Pt, follows
11Results for MSA level data and full sample regressions are available in the appendix.
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a geometric Brownian motion with time varying drift,

dPt = Ptµtdt+ PtσP (ρPSdZ1,t +
√

1− ρ2
PSdZ2,t), (7)

where µt is the time-varying drift and ρPS is the correlation coefficient between the housing price,

Pt, and value of the risky financial asset, St, defined below.

We assume that the housing price growth is predictable in the sense that µt follows a Markov

chain process. In particular, µt can just take two values: a high value µh (high) and a low value

µl (low), with µh > µl > 0. Periods with high drift are associated to “hot” housing markets,

while periods with low drift are associated to “cold” housing markets. Potentially, µt could follow

a n-regime Markov chain allowing more rich dynamics of housing prices. Our choice of the simple

Markov switching model is based on its ability to capture the prominent features of housing price

indexes and to maintain the model tractable. We also explore a three-regime Markov switching

model whose results are provided in the appendix. The transition probability of the expected

growth follows a Poisson law, such that µt is a two-regime Markov chain. Let λi denote the rate

of leaving regime i; therefore, there is a probability λhdt that µt changes from µh to µl during an

infinitesimal time interval dt. In addition, the expected duration of regime h is 1/λh. We assume

that the agent knows with certainty the regime of the economy, hence µt is observable by the agent

at time t. The agent in our model has no uncertainty about the parameters of the model. Pastor

and Veronesi (2003) highlight the importance of learning about the mean profitability in stock

valuation. Our aim is to first understand how agents make housing and portfolio decisions in the

presence of house returns predictability with perfect information and transaction costs. Hence, our

agents are endowed with all the information about the current regime.12

Let Wt define the agent’s wealth in units of non-housing consumption as the investments in the

financial assets (riskless and risky financial assets) and the value of current stock of the house:

Wt = Bt + Θt +HtPt, (8)
12We abstract from introducing uncertainty about expected house appreciation to keep the model as parsimonious

as possible yet still exploiting the implications of predictability and transaction costs in the portfolio choice problem
with housing. Nonetheless, we acknowledge that the agents’ information set is ambitiously rich. We leave the
introduction of learning about the uncertainty of the state variable as useful future line of research.
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where Bt is the wealth held in the riskless asset and Θt is the amount invested in the risky financial

asset, both of them expressed in units of non-housing consumption. The price of the risky asset,

St, follows a geometric Brownian motion:

dSt = StαSdt+ StσSdZ1,t. (9)

Given the process for the risky asset prices, the housing stock law of motion, and the housing

prices dynamics, wealth evolves according to the following process:

dWt = [r(Wt −HtPt) + Θt(αS − r) + (µi − δ)HtPt − Ct]dt

+ (ΘtσS +HtPtρPSσP )dZ1,t +HtPtσP

√
1− ρ2

PSdZ2,t, i = h, l. (10)

The homeowner can sell the house at any time τ . The agent incurs in a transaction cost

which is proportional to the value of the house he is selling. Since the quantity of housing changes

discontinuously at the stopping time τ , the notation Hτ− is used to distinguish the amount of

housing immediately prior to the sale from the quantity of housing immediately after the sale, Hτ .

At the instant the house is sold, the homeowner’s wealth is Wτ = Wτ− − εPτHτ−, where εPτHτ−

is the transaction cost. The homeowner first decides whether it is optimal to instantaneously sell

the house by comparing the value function associated to its problem conditional on selling a house

(action) to the value function conditional on not selling (inaction). Let τ define the stopping time

where the selling action occurs. In practice, homeowners may be required to sell the current house

for exogenous reasons. Marital status changes that involve relocating to a new house and changes in

family size are two possible interpretations of the exogenous moves. We abstract from introducing

exogenous moving shock.13

The value function of this problem, V (W0, P0, H0, i), satisfies the following Bellman equation

in which the consumer chooses optimal consumption of non-housing and housing, asset allocation

and optimal stopping time for buying a new house:
13Stokey (2009b) assumes that this shock is Poisson with a constant arrival rate. In her set up, a positive hazard rate

for exogenous moves makes housing less attractive and moves more frequent. As result, inaction region widens and
the upper and lower bounds increase. In our empirical analysis, we will include changes in demographic characteristics
in assessing the qualitative predictions of our model.
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V (W0, P0, H0, i) = sup
Ct,Θt,Hτ ,τ

E

[∫ τ

0
e−ρtu(Ct, Ht)dt+ e−ρτV (Wτ− − εPτHτ−, Pτ , Hτ , i)

]
, i = h, l.

(11)

We can use the homogeneity properties of the value function to reduce the problem with four

state variables (Wt, Pt, Ht, i) to one with two state variables, zt = Wt/(PtHt), and i, since

V (Wt, Pt, Ht, i) = H1−γ
t P

β(1−γ)
t V

(
Wt

(PtHt)
, 1, 1, i

)
= H1−γ

t P
β(1−γ)
t v (zt, i) , i = h, l. (12)

Furthermore, let ĉt and θ̂t denote the scaled controls ĉt = Ct/(PtHt) and θ̂t = Θt/(PtHt).

A solution consists of a value function v(zt, i) defined on the state space, where bounds zi and

zi define an inaction region, z∗i is the optimal regime dependent return point, and a consumption

policy ĉ∗(zt, i) and portfolio policy θ̂∗(zt, i) defined on (zi, zi), where i = h, l. The function v(zt, i)

satisfies the Hamilton-Jacobi-Bellman equation on the inaction region. Value matching and smooth

pasting conditions hold at the two bounds, and an optimality condition holds at the return point.

Compared to Grossman and Laroque (1990) and Damgaard, Fuglsbjerg, and Munk (2003), the

novel feature exploited here is the persistence in the process that describes the dynamics of housing

prices. The model features optimal rules that reflect the possibility for the agent to invest in a

different regime of housing price growth in the future. The agent has to determine the optimal

rule in each regime, while taking into account the optimal rule in the other one. Thus, the model

generates richer rules than the standard one-regime models. The following proposition exposes the

optimal housing and portfolio choices properties derived from our model.

Proposition 1 The solution of the optimal portfolio choice problem defined above presents the

following properties:

1. v(zt, i) satisfies

ρ̃v(zt, i) = sup
ĉt,θ̂t

{
u(ĉt) +Dv(zt, i) + λi(v(zt, j)− v(zt, i))

}
, z ∈ (zi, zi), (13)

where
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Dv(zt, i) =((zt − 1)(r + δ − µi + σ2
P (1 + β(γ − 1)))

+ θ̂t(αS − r − (1 + β(γ − 1))ρPSσSσP )− ĉt)vz(zt, i)

+
1
2

((zt − 1)2σ2
P − 2(zt − 1)θ̂tρPSσPσS + θ̂2

t σ
2
S)vzz(zt, i), (14)

v(zt, i) = M(i)
(zt − ε)(1−γ)

1− γ , z /∈ (zi, zi) (15)

and M(i) is defined as

M(i) = (1− γ) sup
z≥ε

zγ−1v(z, i), (16)

for i = h, l and j = l, h.

2. The return point z∗i attains the maximum in

v(z∗, i) = M(i)
z
∗(1−γ)
i

1− γ , for i = h, l. (17)

3. Value matching and smooth pasting conditions hold at the two thresholds (zi, zi)

v(ẑ, i) = M(i)
(ẑi − ε)(1−γ)

1− γ , (18)

vz(ẑ, i) = M(i)(ẑi − ε)−γ , (19)

for ẑi = zi, zi and i = h, l.

4. In a state zt, where v(z, i) > M(i) (zt−ε)1−γ
1−γ , the agent chooses a optimal consumption ĉ∗(zt, i)

and portfolio θ̂∗(zt, i) and b̂∗(zt, i)

ĉ∗(zt, i) =
(
vz(zt, i)

β

)1/(β(1−γ)−1)

, (20)

θ̂∗(zt, i) = −ω vz(zt, i)
vzz(zt, i)

+
ρPSσP
σS

(zt − 1), (21)

b̂∗(zt, i) = 1− (1 + θ̂∗(zt, i))/zt, (22)

for i = h, l, and the constant ω is defined as ω = [αS − r + (1− β(1− γ))ρPSσP ] 1
σ2
S

.

The main model implications that will be tested and analyzed in the empirical part of this
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paper are summarized by the following statements:

1. There exists an inaction region for housing, that is, households do not trade housing contin-

uously. Instead, they wait until their wealth ratio is high (low) enough to increase (decrease)

their housing assets. The inaction region is limited by a lower bound zi and an upper bound

zi in each regime i, such as zi < zi for i = h, l.

2. The upper and lower bounds are not constant, but depend on the regime i. In particular,

both the upper and lower bounds in periods of high growth of housing prices are below the

respective bounds in periods of low growth, that is, zh < zl and zh < zl.

3. The portfolio choices of households θ̂∗(zt, i) and b̂∗(zt, i) depend on their individual value of

zt, which at the same time depend on the regime i. Regarding the risky asset position, the

model predicts the following linear relation between asset holdings and the ratio zt of total

wealth to housing wealth when the ratio zt is very close to the bounds zi and zi:

θ̂∗(zt, i) ≈ −
ω

γ
zt +

ρPSσP
σS

(zt − 1). (23)

The equality holds when zt = zi or zt = zi. In any of these cases, equation (21) becomes the

linear portfolio rule in Merton (1969), which is equivalent to the equality in (23). The first

term on the right hand side of (21) becomes “less linear” the further zt is from zt = zi and

zt = zi, because the coefficient of the relative risk aversion varies with zt. The lower relative

risk aversion when zt is close to the upper or lower bounds leads to higher fraction of wealth

invested in the risky asset than when zt is in the center of the inaction region. The second

term is a hedging term.

Figure 2 illustrates the implications of transaction costs, and predictability in housing returns.

Consider that an agent has a ratio of total wealth, Wt, to housing wealth, PtHt equal to 2.5 at

the initial time t = 0. We refer to this ratio as the wealth-to-housing ratio. Assume that t = 0

belongs to a time interval in which the growth of housing prices is high (e.g., real estate boom).

The agent consumes perishable goods and re-balances his portfolio over time. The agent must pay

a transaction cost every time he adjusts his housing consumption; therefore, he does not move

to a bigger (smaller) house until he has not cumulated (lost) a sufficient amount of wealth to
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compensate for this transaction cost. An upper (lower) bound exists. When the wealth-to-housing

ratio, Wt/(PtHt) in the figure, reaches the upper (lower) bound, the agent immediately sells his

house and purchases a bigger (smaller) one in order to reset his wealth-to-housing ratio to its

optimal level. In Figure 2, this event corresponds to point 1 at time t = τ1. As a result, the

ratio Wt/(PtHt) returns to the optimal level z∗h, which corresponds to point 1∗. Now assume that

the economy moves towards a regime of low growth in housing prices shortly after τ1. Note that

both the upper and lower bounds in this period of low housing prices growth are higher than their

respective bounds in the period of high growth. The wealth-to-housing ratio evolves over time until

it hits the upper bound again (point 2) at time t = τ2. Hence, the agent purchases a bigger house

(point 2∗). At time t = τ3 there is a shift to the regime of high expected growth in housing prices

(point 3). As a result, the upper bound shifts down and the agent moves to a bigger house (point

3∗), which is bigger than in the regime of low expected growth in housing prices. The example

continues with symmetrical situations in which the agent moves to a smaller house when his ratio

reaches the lower bound (points 4, 5, and 6). The previous hypothetical example provides intuition

about the main contributions of the paper: (i) the portfolio choice implications of three of the main

characteristics of housing (e.g., housing being a durable consumption good as well as an investment

asset, high transaction costs, and predictability in housing returns); (ii) the testable implications

of the wealth-to-housing ratio for households that want to change their housing holdings; and (iii)

the testable implications about the overall portfolio allocation of these investors.

Predictability in housing returns implies a time varying inaction region as the bounds shift

over time and, as a consequence, a second state variable to the GL framework. In addition to the

wealth-to-housing ratio, the time varying expected growth rate of housing prices also determines

the optimal timing for re-balancing the housing portfolio.14 The inaction region is a function of the

expectations of the growth rate in housing prices. A change in the housing portfolio happens when

the wealth-to-housing ratio reaches the critical level at which point a transaction cost is optimally

disbursed. The time variation in housing prices growth causes a change in the housing part of the

portfolio. It is the bound that moves towards the agent’s wealth-to-housing current ratio up to the

point where it is optimal to pay the transaction costs for re-sizing the housing wealth. In the GL
14In Grossman and Laroque (1990) the only state variable is the wealth-housing ratio. In our analysis, consumption

is a composite of housing services and non-housing goods and services. Using the non-housing good as numeraire
allows us to use the housing consumption in terms of non-housing in the state variable.
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Figure 2: Illustration. Hypothetical path of wealth-to-housing ratio and upper and lower bounds associated

to the two regimes. Changes in the expected growth of prices cause households to buy or sell the house. When the

ratio hits a bound, the benefits of re-sizing the house outweighs the transaction costs.

framework, housing adjustment occurs only when the wealth-housing ratio hits a time-invariant

bound. The intuition is as follows. When the expectations of house appreciation are higher, the

numerator of the wealth-house ratio increases in the next time period. Because the agent expects

to have a lower wealth-house ratio in the next time period due to a regime switch, he upgrades to a

bigger house even with a relatively lower wealth. On the other side, in times of lower expectations

of appreciation, the agent prefers to wait longer until his own wealth increases in order to upgrade

to a bigger house.15

15Morris, Lehnert, and Martin (2008) document that almost all of the decline in rent-price ratio is attributable to
either a steep decline in risk premium or an increase in the expected growth of housing prices, or some combination
of these two factors. Fillat (2009) presents evidence of a small predictable component in growth of housing services,
which is a proxy for growth in rents. This alone does not explain entirely the mean reversion of rent-price ratios after
a shock. Therefore, the absence of a full explanation in the rent growth motivates the presence of predictability in
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Our framework generates richer portfolio rules than the GL framework. In particular, the

coefficient of risk aversion is also regime dependent, generating a different portfolio allocation rule

for each regime. The portfolio allocation rule reflects the possibility of regime switches in the

future. Therefore, the agent has to determine the portfolio rule in each regime, while discounting

the possibility of a future shift in the expected growth rate in housing prices.

4 Data and Parameter Estimation

4.1 Data and Sample Definition

To estimate the Markov switching model, we use annual data on housing prices from the Case-

Shiller Home Price Indexes from 1930 to 2007 for U.S. at aggregate level. The reference index is the

Case-Shiller HPI constructed in Shiller (2005). Hence, we obtain quarterly data on average housing

prices by U.S. Census Macro Regions (West, Midwest, South and Northeast) and U.S. States from

1978 to 2007 using the repeat sales index constructed by the OFHEO.

To test the theoretical predictions of our model, we use household level survey data from

the Panel of Income and Study (PSID) from 1984 to 2007, and from the Survey of Income and

Program Participation (SIPP) of the U.S. Census Bureau from 1997 to 2005. Both surveys have

data on asset holdings and housing wealth. PSID regularly collects information about home values

and mortgage debt; occasionally, it also collects information about behavior on savings and wealth.

SIPP has a detailed inventory of annual real and financial assets and liabilities. It also contains more

frequent measures of those assets that are relevant for assistance measures since its main purpose

is to evaluate effectiveness of government transfer programs. PSID is a nationally representative

longitudinal sample of approximately 9,000 households. PSID interviews are conducted annually

and emphasize the dynamic aspects of economic and demographic behavior. SIPP at each moment

tracks approximately 30,000 households. During the period considered, information was collected

from three consecutive groups of households that were interviewed during the years 1996-2000 (four

times), 2001-2003 (three times), and 2004-2006 (two times), respectively. During its active period,

each panel is interviewed with intervals of several months, while panels of households do not overlap

across periods. SIPP over-samples from areas with high poverty concentrations, which should be

housing returns.
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taken into account when interpreting the results. Its longitudinal features enable the analysis of

dynamic characteristics, such as changes in income and in household and family composition, or

housing dynamics. Its cross-sectional features allow us to keep track of the household wealth. Both

surveys allow us to study the empirical implications of the model outlined above. In particular, we

focus on the identification that arises when households sell their current home to buy a new one.

Unfortunately both data sets offer no measure of overall transaction costs paid by households when

they change their home.

Using the PSID data we calculate wealth as the summation of an individual’s house value, their

second house value (net of debt), business value (net of debt), other assets16 (net of debt), stock

holdings (net of debt), checking and savings balances, and IRAs and annuities less the mortgage

principal17 on the primary residence. We delineate these variables into those that are considered

risky assets and those that are safe assets. The risky assets are comprised of the stock holdings.

The safe asset is comprised of other assets (net of debt), checking and savings balances, and IRA

and annuity holdings, less the principal on the primary residence. Generally, the variables we

utilized from the SIPP data set are net of debt, the sole exception is property value. Using the

SIPP data we calculate risky assets as the summation of equity in stocks and mutual funds. While

the safe assets are the summation of interest earning assets in banks and other institutions, equity

in IRAs, and equity in 401K and thrifts; less outstanding mortgage balance. The value for wealth

is a calculated by adding the risky asset value to safe asset value, business equity, property value

of primary residence, housing equity in second residence and other assets. In both data sets, the

measure of house value is given by homeowners’ estimate of home value. Home value is problematic

in that there might be a large amount of measurement error in the figure quoted. However, we

would argue that while most home owners only have a general idea of the value of their home,

owners which are near to the bound or have recently bought a house have very precise knowledge of

the value of their home. Hence, if households do not own risky stock or safe asset such as checking

and savings balances, IRA and annuity holdings, we set these these holdings to zero. In addition,

we exclude households whose total reported stockholdings are negative. This exclusion does not

affect the qualitative results reported below.
16Other assets include bonds and insurance.
17For comparability across waves of surveys, we focus only on the primary mortgage.

19



Table 2 shows the descriptive statistics for the main variables that we use in the empirical

analysis. We present statistics for the full sample and also for the selection of households that

moved to a bigger or a smaller house (second and third pair of columns respectively.) We show

mean and standard deviations of the relevant variables. The single most important variable is the

wealth-to-housing ratio, z. For the PSID sample we observe that, on average, the value of the

house is approximately two-thirds of the total household wealth. This average ratio is lower for

movers, not controlling for any other reason to move exogenous to the model. Risky asset holdings

are roughly 5.5% of the total wealth, and risk-free asset holdings represents 18.2% of total wealth,

much higher for households who buy a more valuable house. We define the dummy Move big

(small) to identify households selling the current house to buy a bigger (smaller) one in the same

U.S. Census Macro Region. Hence, we report summary statistics for variables that will help us to

distinguish between changes in housing that occur because of reasons that are exogenous to the

model and changes in housing that occur because individuals have a total wealth-to-housing ratio

that is close to the boundary.

In order to capture exogenous shocks, we define variables to examine changes in demographics

from the year before to the year after home purchase. ∆ Family size shows the statistics of changes

in family size. ∆ Retired is a dummy variable which takes value of one if the individual enters into

retirement in the year of the questionnaire. ∆ Married is a dummy variable which takes value of

one if the individual gets married. ∆ Employment is a dummy variable which takes value of one if

the individual changes his employment status. During the sample period analyzed using the PSID

data, the size of the household (in number of members) decreased by −0.044, while the retired

sample increased in 1.3%. The family size increased for movers to a bigger house, 0.069, while

decreased for movers to a smaller house, −0.228, meaning that housing consumption is strictly

related to the number of members in the household. Marriages also increase, by almost 1.5%, and

again this figure is substantially higher for movers. The age composition of the full sample consists

of 9.9% of under 30 years individuals and 48.5% between 30 and 50. The age composition of movers

is shifted towards a younger population: the under 30 category represents 24.3% of movers and

the between 30 and 50 represent 55% of all movers. The regional composition, in terms of Census

regions are 15.5% Northeast, 26.6% Midwest, 41% South, and 16.9% West. The summary statistics

using SIPP do not differ substantially. It is worth to mention the differences in age composition,
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Table 2: Descriptive statistics. Statistics for the main variables used in our analysis from PSID and SIPP

data. The variables Move big and Move small correspond to the individuals who moved to a house of higher and

lower value, respectively. Full sample refers to all the individuals in the sample, irrespective of their moving situation.

The ratio W/(PH) corresponds to the ratio of total wealth over housing wealth, net of debt. ∆ Family size shows the

statistics of changes in family size. ∆ Retired is a dummy variable which takes value of one if the individual enters

into retirement in the year of the questionnaire. ∆ Married is one if the individual gets married, zero otherwise. ∆

Employment is one if the individual changes employment status, zero otherwise. Agey<30 and Age30<y<50 are dummy

variables capturing individuals younger than 30 years old and between 30 and 50 years old respectively. Northeast,

Midwest, South and West are U.S. Census Macro Regions dummies.

(a) PSID data

Full sample Move big Move small
(Num. obs.=20343) (Num. obs.=1290) (Num. obs.=465)

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

z = W/(PH) 1.374 1.649 1.300 1.778 1.231 1.635
Risky holdings on wealth ratio θ/z 0.055 0.145 0.064 0.180 0.058 0.154
Risk-free holdings on wealth ratio b/z 0.182 0.333 0.225 0.358 0.175 0.242
Move big 6.3% 24.4%
Move small 2.3% 14.9%
∆ Family size -0.044 0.670 0.069 0.921 -0.228 1.143
∆ Retired 1.3% 24.3% 0.8% 15.7% 1.9% 25.8%
∆ Married 1.6% 12.7% 6.7% 25.0% 3.2% 17.7%
∆ Employment 14.9% 35.6% 10.0% 30.0% 21.5% 41.1%
Agey<30 9.9% 29.8% 24.3% 42.9% 18.7% 39.0%
Age30<y<50 48.5% 50.0% 55.0% 49.8% 44.9% 49.8%
Northeast 15.5% 36.2% 13.3% 34.0% 9.7% 29.6%
Midwest 26.6% 44.2% 26.9% 44.4% 27.3% 44.6%
South 41.0% 49.2% 39.3% 48.9% 42.8% 49.5%
West 16.9% 37.5% 20.5% 40.4% 20.2% 40.2%

(b) SIPP data

Full sample Move big Move small
(Num. obs.=105447) (Num. obs.=1784) (Num. obs.=906)

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

z = W/(PH) 1.385 1.625 1.384 1.734 1.218 1.444
Risky holdings on wealth ratio θ/z 0.060 0.184 0.080 0.177 0.056 0.145
Risk-free holdings on wealth ratio b/z 0.203 0.383 0.239 0.345 0.170 0.243
Move big 1.7% 12.9%
Move small 0.9% 9.2%
∆ Family size -0.015 0.507 0.078 0.730 -0.086 0.838
∆ Retired 2.0% 13.9% 1.8% 13.3% 3.5% 18.5%
∆ Married 1.1% 10.6% 1.1% 10.5% 4.7% 21.3%
∆ Employment 6.9% 25.3% 9.8% 29.7% 12.6% 33.2%
Agey<30 5.9% 23.5% 13.6% 34.3% 10.2% 30.2%
Age30<y<50 42.8% 49.5% 59.9% 49.0% 45.1% 49.8%
Northeast 18.0% 38.5% 14.3% 35.0% 13.9% 34.6%
Midwest 27.2% 44.5% 27.9% 44.8% 24.9% 43.3%
South 36.2% 48.1% 32.0% 46.6% 38.5% 48.7%
West 18.5% 38.5% 25.9% 43.8% 22.6% 41.9%

where the youngest group is more represented in PSID. In terms of moving, the group of movers to

a bigger and smaller house is lower in SIPP than in PSID in percentage terms, although we have
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more observations for this group in SIPP. Geographic composition and other relevant variables are

comparable both in levels, standard errors, and also conditional on moving household.

Table 3 provides information on the percentage of movers by current ownership status (owner,

renter, or occupied) over total households in the PSID and SIPP surveys across all years. The

four columns represent percentage of households that moved to a new address, that moved to a

new address in the same U.S. Census Macro Region, that moved to a new address in the same

U.S. State, and that moved to a new address and were previously not homeowners. While we can

easily identify movers in PSID because it reports explicitly whether there has been a move since

the previous interview, we have to identify movers in SIPP keeping track of the households’ address

identifier. That identification mechanism is what generates differences between SIPP and PSID

that were not present in Table 2. In the upper panel of Table 3 we observe that the percentage

of owners who move is much lower than the percentage of renters, who have much higher mobility

than owners. The percentage of movers to a different U.S. Census Macro Region or U.S. State

is very low among owners. The total inflow of homeowners is different between PSID and SIPP.

While households in SIPP entering in home ownership during the sample is 5.47%, more than half

of the movers in PSID are new home-owners.18 Despite of reporting data for renters, it is necessary

to emphasize that we do not model renters’ decisions. Our agent does not have the possibility

of renting. In order to consume housing services, the only option is to pay a transaction costs

and purchase the asset quantity Ht and derive a flow of services from it. Renting is not part of

the model and we select the sample of homeowners only. Therefore, the model is mute about the

renters who moved during the sample period.

4.2 Parameterization

This subsection presents the estimation procedure of the discrete time counterpart of the Wonham

filter.19 This discrete time version of the filtering problem and estimation is due to Hamilton (1989),

and it is implemented with the longer Case-Shiller HPI constructed in Shiller (2005) for U.S. at

aggregate level and with OFHEO housing price indexes for the U.S. Census Macro Regions (West,

Midwest, South and Northeast). The filter is an iterative procedure which provides estimates of
18New in the sense that they did not own at t− 1 but it could be the case that they were owners in the past.
19For a more detailed proof of the derivation and implementation of the filter used in the parametrization see

Lipster and Shiryayev (2001).
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Table 3: Movers. Percentage of households that moved over total households in the PSID and SIPP surveys

across all years. The first column captures the percentage of households that changed address. The second column

captures the percentage of households that moved to a new address in the same U.S. Census Macro Region. The

third column captures the percentage of households that moved to a new address in the same U.S. State. The last

column shows the percentage of movers that were not owners in the preceding period.

(a) PSID data

Status Move Same U.S. Same U.S. State Not Owner at t-1
Census Macro Region

Owner 15.43% 14.82% 14.19% 3.79%
Renter 28.70% 27.03% 25.26% 25.31%
Occupied 4.15% 3.87% 3.56% 3.63%

(b) SIPP data

Status Move Same U.S. Same U.S. State Not Owner at t-1
Census Macro Region

Owner 13.55% 12.74% 12.00% 5.47%
Renter 35.16% 33.55% 32.17% 32.67%
Occupied 3.49% 3.31% 3.09% 3.06%

the probability that a given regime is prevailing at each point in time given its previous history.

We assume that the growth of home prices can be expressed as

dPt
Pt

= µ(st) + σPdZP,t, (24)

where st is the unobserved regime of the economy, either high or low. Throughout the paper,

the 2-regime expected growth rate of housing prices are indexed by h or l, respectively. The

Wiener process ZP,t is correlated with the shock to the stock price, and it can be expressed as

dZP,t = ρPSdZ1,t +
√

1− ρ2
PSdZ2,t. The regime shift follows a Markov two-regime chain with

transition probability matrix Φ, with diagonal entries 1− λh and 1− λl. The more persistent the

Markov chain, the slower mean reversion the process has. The vector of parameters to be estimated

is Ω1 =
{
λh, λl, µh, µl, σP

}
.

Figure 3 shows the ex-post estimated probabilities of being in a high expected growth regime.

In general, the housing markets are more likely to be the low price growth regime. The probability

of being in the high-growth regime is more than 50% (i.e., the probability of growing at 8.89% on

average is higher than the probability of growing at 0.06%) only in two periods. These two periods

were identified with the World War II and the 2000s real estate booms.
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Figure 3: Probability of being in a high regime. Contemporaneous estimated probability of being in a

regime where housing prices grow at an annual 8.89% (continuous line, right-hand scale) as opposed to the moderate

low regime, where the expected growth is 0.06% a year. The figure shows the percentage change per annum of the

Case&Shiller US Home Price Index (dotted line, left-hand scale).

Table 4 summarizes the estimates for the housing price dynamics, reporting the parameters tfor

the composite S&P Case-Shiller HPI for U.S. at aggregate level and for the OFHEO housing price

indexes for the U.S. Census Macro Regions (West, Midwest, South and Northeast). Due to the

shorter time series and the most recent boom episode (1998-2006), house prices growth rates are

higher in both regimes, high and low, for U.S. Census Macro Regions than U.S. at aggregate level.

We provide the charts of the ex-post estimated probabilities of being in a high expected growth

regime for the four U.S. Census Macro Regions in the appendix, Figure 6. We have also estimated a

three-regime Markov switching model for the U.S. Census Macro Regions. The parameter estimates

are reported in Table 17 and Figure 7 shows the ex-post estimated probabilities of being in a high

and medium expected growth regime.

Table 5 summarizes calibrated the preference parameters, risk free rate, housing stock dynamics,

transaction costs, and the estimated dynamics of prices of risky assets. We assume a curvature of

the utility function of 2 and a rate of time preference of 2.5%. The parameter 1− β measures how
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Table 4: Parameter values for the housing prices process. Estimation of the parameters corre-

sponding to the housing price processes using a discrete Markov regime (Wonham filter). The level of the housing

price drift in the low and high regimes are represented by µl and µh, respectively. The unconditional probabilities of

moving from the low to the high regime or from the high to the low regime are λl and λh, respectively. The house

price standard deviation is represented by σP . The first column shows the parameters obtained using aggregate

annual U.S. data from 1930 to 2007. The second to forth columns show the U.S. Census Macro Regions obtained

using semiannual data from 1975 to 2007. All parameters are reported in annual basis.

US aggregate West Northeast South Midwest
(1930-2007) (1975-2007) (1975-2007) (1975-2007) (1975-2007)

µh 0.0889 0.1422 0.1186 0.0962 0.1272
µl 0.0006 0.0446 0.0186 0.0362 0.0418
σP 0.0410 0.0153 0.0183 0.0102 0.0098
λh 0.2775 0.1611 0.1152 0.1710 0.2301
λl 0.0387 0.0440 0.0991 0.0433 0.0169

much the agent values housing consumption relative to the numeraire consumption. It is set at 0.4

which is consistent with the average proportion of household housing expenditures in the U.S.20 We

assume that the risk free rate is equal to 1.5% annually. Using U.S. data over the period 1889-2005,

Kocherlakota (1996) reports an average real return on a market index of 7.7% and a standard

deviation of 16.55%. We consider the estimated housing price standard deviation, σP , of 4.1% too

low, due to inertia in house price indexes. Instead, we assume a housing price standard deviation of

10%. This is close to the one estimated by Campbell and Cocco (2003) and Landvoigt, Piazzesi, and

Schneider (2010). Campbell and Cocco (2003) report a housing price standard deviation of 11.5%,

using housing price data from the PSID for the years 1970 through 1992. Landvoigt, Piazzesi, and

Schneider (2010) report a housing price standard deviation of 10%, using micro data on the San

Diego Metro area for the years 1997 through 2008. We set the correlation coefficient ρPS at 0.25.

We assume that the cost of selling a house to be 5% of the value of the unit. This figure includes

the agent’s commissions, legal fees, time cost of search and the direct cost of moving the consumer’s

possessions. While the true costs of moving are difficult to measure, they are not negligible and

involve significant expenditures of time, effort and money. Following previous literature, we set the

housing physical depreciation rate at an annual 2%.
20While Cocco (2005) sets 1 − β at 0.1, Yao and Zhang (2005) assume that 1 − β equals 0.2.
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Table 5: Parameter values.

Variable Symbol Value
Curvature of the utility function γ 2
House flow services 1− β 0.4
Time preference ρ 0.025
Risk free rate r 0.015
House depreciation δ 0.02
Transaction cost ε 0.05
Risky asset drift αS 0.077
Standard deviation risky asset σS 0.1655
Correlation housing price - risky asset ρPS 0.25

5 Results

5.1 Numerical Results for the Portfolio Choice Problem

It is not possible to find properties of the portfolio choice problem in closed-form when we take

into account transaction costs. Consequently, we implement an iterative procedure to find the

numerical solution of the problem. A detailed description of this iterative procedure can be found

in the appendix.

Figures 4 and 5 are key to show the three main implications of the model that arose from

Proposition 1 and will be tested in the empirical section of this paper. First, let us focus on Figure

4. The upper panel displays the difference between the value function, v(zt, i), and the value of

changing housing consumption, (zt− ε)1−γM(i)/(1−γ), against the value of the wealth-to-housing

ratio, zt, using the parameter values reported on Tables 4 and 5. If this difference is positive, then

the agent does not move to a bigger or smaller house (i.e., the agent is in the inaction region.) The

agent only moves when this difference is zero, that is when the value function from not moving

given by v(zt, i) is equal to the value from moving given by (zt − ε)1−γM(i)/(1 − γ).21 As Figure

4 shows, agents only move in two situations: (i) when their total wealth is high enough relative

to their current house value so that zt reaches the upper bound zi; or (ii) when their house value

is too high relative to the total wealth and zt reaches the lower bound zi. The inaction region is
21This is equivalent to saying that the values of the upper bounds zi and the lower bounds zi are determined by

the value matching conditions (18) for i = h, l, by which the agent is indifferent between not moving and moving.
Additionally, the smooth pasting conditions in (19) assure that v(zt, i) is differentiable on the threshold that triggers
the agent to move. As Figure 4 shows, this implies that v(zt, i) is less concave than (zt − ε)1−γM(i)/(1− γ) at these
points. However, v(zt, i) must become more concave than (zt − ε)1−γM(i)/(1 − γ) somewhere between zi and zi.
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limited by a lower bound zi and an upper bound zi in each regime i, such as zi < zi for both the

high regime (i = h and top part of Figure 4) and the low regime (i = l and bottom part of Figure

4). In Section 6.1 we will test the existence of the upper and lower bounds hypothesis and we will

study its main implications.

Second, the two panels of figure 4 show the differences of the solution across regimes. The

upper and lower bound are not constant but depend on the regime i. We obtain that zl = 1.532,

zl = 6.539, and the ratio chosen when a new house is purchased z∗l = 3.188 for the low regime.

Equivalently, we find that zh = 0.258, zh = 1.659, and z∗h = 0.729 for the high regime (see Table 6.)

The economic magnitude of the calibrated results is sizeable: during a period of low (high) house

appreciation, an average investor will decide to buy a bigger house when the wealth is approximately

higher than 6.5 (1.6) times the value of her current house. On the other hand, when her total wealth

is approximately less 1.5 (0.2) times the value of the house, the agent will engage in a transaction

to buy a smaller house. Note that: (i) the upper and lower bounds in the high regime are below

their respective upper and lower bounds in the low regime, that is, zh < zl and zh < zl; (ii) the

inaction region for the low regime, [zl, zl], is larger than the inaction region for the high regime,

[zh, zh]; (iii) the inaction regions for the two regimes overlap over a range of zt values, [zl, zh]; and

(iv) the optimal housing wealth on total wealth, 1/z∗i , for the high (low) regime is 1.370 (0.313)

lower than the constant ratio of 2.796 (0.366), αih, chosen by an agent who faces no transaction

costs.22; (v) the size of upward adjustment and downward adjustment in a high regime is lower in

than in a low regime, zh− z∗h < zl− z∗l and z∗h− zh < z∗l − zl. In Section 6.2 we will empirically test

these types of findings related to the effects of the predictability in housing returns on the upper

and lower bounds.

In addition, in a GL framework, a housing transaction occurs only when the wealth-to-housing

ratio, zt, hits the upper or lower bounds. Figures 4 shows that our framework features a second

channel: the regime switching mechanism. A transaction may also occur when the regime switches

from high to low and the agent’s wealth-to-housing ratio zt is in the region [zh = 0.258, zl = 1.532].

Let us assume that zt = 0.500. In this case, it is not optimal to sell during the high regime because

his ratio zt is not low enough (i.e., zt > zh). However, if there is a switch to the low regime, then
22Transaction costs make housing more expensive, so the agent who faced those costs would hold less of his wealth

in the form of housing.
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Figure 4: Value function and value of changing the home. The difference between the value

function, v(zt, i), and the value of changing housing consumption, (zt−ε)1−γM(i)/(1−γ), is plotted against zt, where

zt = Wt/(HtPt). The dotted line represents the high regime, while the continuous one the low regime (bottom). x

(+) indicates the location of zt at the point when a new purchase becomes optimal in high (low) regime. zh and zh
represent the upper and lower bound in high regime. zl and zl represent the upper and lower bound in low regime.

z∗h (z∗l ) indicates the locations of zt just after the purchase of a new durable in high (low) regime.

the lower bound would increase from zh to zl, and, consequently, it would be optimal for the agent

to sell reduce his housing holdings because zt 6 zl. The other interesting case occurs when there is
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Figure 5: Risky asset and risk-free asset. Relative risk aversion and portfolio allocation as a function

of zt, where Wt/(HtPt): Share of risky stock θ̂(zt, i)/zt (top) and share of risk-free stock b̂(zt, i)/zt (bottom). The

dotted line represents the high regime, while the continuous line is the low regime.

a regime switch from low to high and zt is in the region [zh = 1.659, zl = 6.539].23

23The location of the bounds depends on the transition probabilities to switch regime at next period given the
current regime. Specifically, for the low regime, the estimated transition probability, λl, is only about 4%, while λh

is about 28% for the high regime. As result, the location of the upper bound crucially depends on the probability of
a regime switch from high to low.
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Third, as one may expect, this regime-switching mechanism generates rich portfolio rules. The

upper panel of Figure 5 plots the fraction of wealth invested in risky asset against wealth for the

two regimes of expected growth rate of housing prices, θ̂∗(zt, i)/zt, for i = h, l. Each curve is drawn

only for the realizations of zt within the inaction bounds. We find that it is optimal to increase

the holdings of stocks in the low regime and sharply decrease them in the high regime in order

to increase the amount of housing stock. Note that the optimal portfolio rules are quite different

from the no transaction costs case, where the fraction of wealth invested in each asset is constant.

What is the channel that drives the portfolio choices of the agent and makes them different from

the ones provided by other models? The key mechanism of the model is the coefficient of relative

risk aversion, −(ztvzz(zt, i))/vz(zt, i), which varies with zt and with the regime i with i = h, l. As in

Grossman and Laroque (1990) and Damgaard, Fuglsbjerg, and Munk (2003), the lower relative risk

aversion when zt is close to the upper or lower bounds leads to higher fractions of wealth invested in

the risky asset than when zt is in the center of the inaction region. Hence, the relative risk aversion

after a housing trade associated with a high regime, −(z∗hvzz(z
∗
h, h))/vz(z∗h, h), is higher than the

one associated with a low regime, −(z∗l vzz(z
∗
l , l))/vz(z

∗
l , l). In our benchmark case, we obtain a

relative risk aversion of 2.205 for the high and 2.112 for the low regime respectively (Table 6).

In general, transaction costs make housing more expensive, so the agent who faces that cost

holds less of her wealth in the form of housing. In our benchmark case, due to transaction costs

we observe a reduction of 51% (14%) in housing share in the high (low) regime. In a high regime

the optimal housing holding is substantially higher, the inaction region is narrower and housing is

quite attractive for investment purposes, but transaction costs have the dramatic effect of lowering

the optimal housing wealth to total wealth ratio, 1/z∗i , and making the agent more risk averse after

a housing trade. Differently from Grossman and Laroque (1990) and Damgaard, Fuglsbjerg, and

Munk (2003), the coefficient of risk aversion depends on the current regime. In summary, the model

delivers a regime contingent portfolio rule. Additionally, due to the possibility of a regime change,

the portfolio rule reflects the agent’s investment set in the other regime. Therefore, the agent has

to determine the portfolio rule in each regime, while taking into account the portfolio rule in the

other regime.

The lower panel plots the fraction of wealth invested in the risk free asset, b̂∗(zt, i)/zt. We find

that: (i) the agent is a net borrower in both regimes; (ii) he borrows a bigger amount in the high
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regime (to increase his housing holdings, which are more attractive in the high regime) than in the

low regime; and (iii) his borrowing increases with his ratio zt. In Section 6.3 we will empirically

test these findings related to the portfolio choices of households.

In section 2, we provide evidence that the degree of predictability varies across the U.S. Census

Macro Regions. The theoretical relevance of the housing price dynamics parameters is evident

analyzing the results of the calibration. Due to the shorter time series and the most recent boom

episode (1998-2006), house prices growth rates are higher in both regimes, high and low, for U.S.

Census Macro Regions than U.S. at aggregate level result (Table 4). As result, inaction regions are

narrower than the ones calculated in the benchmark case. In order to characterize the implications

of predictability, we calculate the long run average of the total wealth-to-housing ratio (right after

a housing purchase), E(z∗i )/E(τi).24 As expected, the long run average is regime dependent as well.

The West region is characterized by smaller values in both regimes. The long rung average is 0.421

in the high regime and 1.531 in the low regime which are higher than the constant ratios of 0.177

and 0.855 respectively, chosen by an agent who faces no transaction costs (Table 6, Column (8)).25

Furthermore according to the calibration exercise, we should observe cross-sectional variation in

the long run average, because the degree of predictability in housing returns varies across the four

U.S. Census Macro Regions. In Section 6.1 we will empirically test these implications.

It is important to recognize that while the optimizing behavior characterized above is that

of a hypothetical infinitely lived agent, the data we will use later to test model’s predictions are

drawn from a cross-section of demographically heterogenous consumers. Therefore, to assess the

descriptive fit of our model, we will include demographic characteristics and changes in demographic

characteristics, for example household head age in two age bands, change in marital status and

change in family size, which may absorb determinants other than dynamic variation of the type

featured by our representation of a typical agent’s problem.

5.2 Sensitivity Analysis

Table 6 presents a sensitivity analysis of the model. It shows the sensitivity of three key variables

of the model (zi, z∗i ,zi) to four scenarios with deviations of four parameters from the benchmark

24E(z∗i )/E(τi) is the function that describes the the long run average of the optimal wealth-to-housing ratio inside
the inaction region conditional on the regime where the agent is.

25 The constant ratio is computed as 1/αhi .
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Table 6: Sensitivity analysis. Columns (1), (2) and (3) display the lower bound, the optimal return point and

the upper bound, respectively. The optimal return point represents the wealth-to-housing ratio immediately after a

housing purchase. Column (4) is the the optimal housing-to-wealth ratio without transaction costs and Column (5) is

the corresponding ratio with transaction costs immediately after a housing purchase. Column (6) is the relative risk

aversion just after housing purchase, and Column (7) is the average holding of the risky asset, estimated just after

a housing purchase. Column (8) is the long run average of the optimal wealth-to-housing ratio immediately after a

housing purchase. The first row in the table represents the benchmark case, described previously in this section. Four

scenarios illustrate alternatives to the benchmark: (A) sensitivity to the correlation between the housing price and

the stock market; (B) sensitivity to the transaction costs associated with moving; (C) sensitivity to the curvature of

the utility function; and (D) sensitivity to housing price standard deviation. Finally, (E) reports the model results

when we use the estimated housing prices parameters for the four U.S. Census Macro Regions that were shown in

Table 4.

Regime (1) (2) (3) (4) (5) (6) (7) (8)

i zi z∗i zi αih 1/z∗i RRA(z∗i )
E

„
θ̂∗(z∗,i)
z∗

«
E(τi)

E(z∗i )

E(τi)

Benchmark High 0.258 0.729 1.659 2.796 1.370 2.205 0.882 0.809

(U.S. aggregate: 1930-2007) Low 1.532 3.188 6.539 0.366 0.313 2.112 1.087 3.679

(A) Correlation Pt - St High 0.212 0.518 1.273 3.762 1.927 2.398 1.222 0.647

ρPS = −0.25 Low 1.043 2.731 4.649 0.553 0.366 2.130 1.102 2.750

(B) Transaction cost High 0.275 0.707 2.272 2.796 1.413 2.355 0.841 0.900

ε = 0.075 Low 1.560 3.379 7.540 0.366 0.295 2.122 1.088 4.036

(C) Curvature High 0.480 0.868 1.782 2.015 1.151 3.298 0.572 0.937

γ = 3 Low 1.869 3.159 5.538 0.345 0.316 3.199 0.725 3.599

(D) Housing price st.dev. High 0.175 0.521 0.880 4.872 1.918 2.325 0.754 0.570

σP = 0.075 Low 1.547 2.906 5.240 0.406 0.344 2.165 1.053 3.205

(E) U.S. Census

macro regions (1975-2007)

West High 0.186 0.339 0.634 5.623 2.943 3.159 0.333 0.421

Low 0.698 1.441 2.864 1.128 0.693 2.234 0.970 1.531

Northeast High 0.198 0.390 0.735 4.432 2.563 2.948 0.512 0.477

Low 0.966 2.156 4.473 0.694 0.463 2.149 1.041 2.364

South High 0.292 0.609 1.105 3.202 1.640 2.433 0.777 0.726

Low 0.876 1.689 3.862 0.824 0.591 2.196 1.015 1.942

Midwest High 0.195 0.399 0.694 4.778 2.500 2.835 0.485 0.466

Low 0.784 1.693 3.281 0.937 0.590 2.195 0.998 1.782

model. Moreover, Column (4) is the the optimal housing-to-wealth ratio without transaction costs,

αhi , and Column (5) is the corresponding ratio with transaction costs immediately after a housing

purchase, 1/z∗i . Column (6) is the relative risk aversion just after housing purchase, RRA(z∗i ),

and Column (7) is the average holding of the risky asset, estimated just after a housing purchase,

E
(
θ̂∗(z∗, i)/z∗i

)
/E(τi). Column (8) is the long run average of the optimal wealth-to-housing ratio
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immediately after a housing purchase, E(z∗i )/E(τi). Scenario A illustrates how a change in the

correlation between the housing price and the risky affects the optimal behavior. The optimal level

z∗i decreases in both regimes, meaning that housing consumption increases. In addition, the lower

and upper bounds decrease as well. As the correlation decreases, housing becomes more effective as a

hedge to diversify away the stock market risk, which leads to increase housing holding. Furthermore,

holding risky asset becomes more attractive. In scenario B, we consider the sensitivity of our results

to changes in the transaction costs parameter ε. We find that a rise in transaction costs tend to

widen the inaction region and shift it to the right in both regimes. Increasing ε also increases the

optimal level z∗i and raises the the average ratio of optimal wealth-to-housing, E(z∗i )/E(τi). In

scenario C, we vary the curvature coefficient γ from 2 to 3. As expected, the average holding of

risky asset falls from 0.882 to 0.572 in the high regime and from 1.087 to 0.725 in the low regime;

only in the high regime it is substantially lower than the benchmark case. Scenario D shows that a

decrease in house price volatility σP leads to a narrower inaction region and a substantial increase

in housing consumption. Moreover, housing is quite attractive for investment purposes in the high

regime, decreasing the average holding of risky asset from 0.882 to 0.754.

6 Empirical Results

In this section we test the main implications of the theoretical model. We use two different sources

of data: (i) PSID individual level data from the surveys of 1984, 1989, 1994, and bi-annual data

from 1999 to 2007; and (ii) SIPP individual level data from the surveys of 1997, 1998, 1999, 2002,

2003, and 2005. We use the household level data to test predictions about the agents’ wealth-to-

housing ratio and their portfolio choices. One of the implications of the model is the existence of

a regime dependent inaction region and optimal return levels of the ratio. The model also predicts

that asset allocations are also regime dependent. We test the differences in the allocations across

the two regimes of housing prices dynamics.26

Figure 2 previously illustrated a hypothetical path for wealth-to-housing ratio as well as for

the expected growth rate of housing prices. Several hypothesis can be identified in the graphic.

Transaction costs generate an inaction zone with upper and lower action bounds. We are able
26We acknowledge that data on asset holdings are prone to misreporting and measurement error, hence we should

take the results cautiously.
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to test whether these bounds are actually different from each other by comparing the wealth-to-

housing ratio of individuals who moved to a higher-valued house to the ratio of those who moved to

a lower-valued house. The ratio before moving defines the upper and lower action bounds, z and z,

respectively. When agents decide to engage in the purchase of a new house after hitting the bound,

they choose the value of the new house such that the wealth-to-housing ratio reaches its optimal

level. The observed ratio after moving determines the optimal ratio z∗. The model predicts that

the bounds and the optimal level of the wealth-to-housing ratio are regime dependent, therefore we

can test that these variables are different in hot and cold housing markets.

6.1 Existence of the Upper and Lower Bounds Hypothesis

The first hypothesis to be tested is the existence of the optimal upper and lower bounds provided by

the model in the cases in which transaction costs are taken into consideration. We test whether the

lower bound is significantly different and, in particular, significantly lower than the upper bound.

Although this hypothesis is rather obvious, we use it as the initial step before executing more

convoluted tests about the state dependency of the boundaries and optimal levels of wealth-to-

housing ratio. Formally,

Hypothesis 1. z(µ) < z(µ). Therefore, z is significantly different (and lower) from z for a

given expected growth in housing prices, µ.

This hypothesis states that ex-ante average value for the ratio of total wealth to housing asset

holdings for families who own a house and move to a smaller house z is significantly different (and

lower) from the ratio of total wealth to housing asset holdings for families who own a house and

move to a bigger house z. We test whether the average value of the ratios zit for families who

moved to a bigger house is different from the ratios for families that move to a smaller house. To

test this hypothesis, we estimate the following reduced form model, which exploits the variation

across households and years.

zit = γ0 + γ1 ·mBIGit + γ2 ·mSMALLit + Γ ·Xit + uit, (25)

where zit is the total wealth-to-housing of household i at time t; mBIGit is a binary variable equal

to one if the family is increasing its housing holdings (e.g., moving to a bigger house); mSMALLit
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is a binary variable equal to one if the family is decreasing its housing holdings (e.g., moving to

a small house); Xit contains a set of control variables that intend to capture changes in housing

due to exogenous causes, unrelated to wealth-to-housing ratio, and uit is an error term. The set of

controls in Xit includes changes in employment status, changes in family size, retirement, changes

in marital status, and age controls. All variables control ex-ante changes to examine changes from

the year before to the year after home purchase. The regression omits the families who do not

move, treating them as a benchmark. Therefore, we check whether γ1 is significantly positive and

different than zero, which means that the wealth-to-housing ratio of the households who move to

a bigger house is significantly higher than the ratio of those who do not move. We run the pooled

regression in equation (25) with year fixed effects and also separate regressions for each year.

The results of testing the first hypothesis are shown in Table 7. The first column shows the

results for the pooled regression wiht year fixed effects. It shows that the average value of zit for

families that do not move, γ0, is 1.983 for PSID data and 1.961 for SIPP data. The ex-ante (e.g.,

prior to moving) average value of zit for families that moved to a bigger house is 0.214 and 0.243

above the non-movers average with a 99% of significance for PSID and SIPP, respectively. Similar

results are obtained when running yearly regressions. Note that γ2 is not significantly different

from γ0 in general. Thus, the average ratio zit for the non movers is not significantly different

from the average ratio of the movers to smaller houses. It can be inferred that the distribution

of wealth-to-housing ratio is skewed to the left and on average, agents are closer to move down

according to our model. We also run a test on the coefficients γ1 and γ2 being equal, which is

strongly rejected for most of the years. This result supports the obvious hypothesis of the existence

of the inaction zone in the presence of transaction costs since the test shows that the upper and

lower bounds are significantly different from each other. The results of the test also show evidence

that the ratio zit is time-varying, on average. This is a clear effect for non-movers and for agents

who move to a bigger place in SIPP. For non-movers γ0 is 1.886 in 1997, it goes up to 1.928 in

1999, and it decreases to 1.671 in 2005. For families that move to a bigger place γ0 + γ1 is 2.193 in

1997, and it decreases to 1.956 in 2005. Similar results hold for the PSID data.

The effect of the regional dummies is statistically significant and economically sizable. The

ex-ante (e.g., prior to moving) average value of zit for families living in West and South is lower

than for the ones living in Northeast (the benchmark) and Midwest. The result holds for PSID and
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SIPP. The estimated effects lend support to the model predictions. According to our estimates of a

three-regime Markov switching model for the U.S. Census Macro Regions, we observe the following

pattern for West, South and Northeast. According to the ex-post estimated probability of being in

a certain regime we identify two periods: 1998 (2) - 2004 (1) is characterized by medium housing

price growth, while the successive period 2004 (2) - 2006 (2) is characterized by high housing price

growth (Figure 7). Instead, Midwest housing markets are characterized by a low housing price

growth over the same period. Our model predicts that long run averages of z for West, South and

Northeast should be lower than the one for Midwest and decreasing over the same period (Table

18). The prediction is consistent to what we observe in the coefficient estimates for the considered

years. Although, if we compare the ranking suggested by the model according to the long run

average with the one derived by the coefficient estimates, West occupies the right position while

South and Northeast should swap it.

Our estimates of the effect of the lower boundary, γ2, are not correctly signed and insignifi-

cant. One possible explanation is the absence of labor income in the classic GL framework we

are considering. In the data, our measure of wealth includes all financial assets of the household.

These include traditional savings and stocks as well as small business capital, and other owned real

estate. The measure also includes liabilities outstanding to the household. Outstanding liabilities

are subtracted from the total assets to give the agents net wealth position, Wt. One could consider

a broader definition of wealth, accounting for current and future labor income.27 In addition, the

model should be also extended to consider the optimal behavior of a hypothetical finitely lived

agent. In this set up, we expect to observe optimal downward adjustments in housing when the

agent is older and his human capital is decreasing but his financial wealth is still substantial and

unchanged. Our set of explanatory variables, X, can only partially control for crucial features of

human capital accumulation.28 We acknowledge that uncertain human capital accumulation defi-

nitely plays an important role in housing decisions. However, this set up would be more complicated
27 Martin (2003) incorporates the present value of the agent’s lifetime labor income assuming that human capital

is a linear function of years remaining in work force, education, race and current income. However, he is implicitly
assuming that individual is not facing labor income uncertainty. Bertola, Guiso, and Pistaferri (2005) analyze
infrequent durable goods stock adjustment in the presence of idiosyncratic income uncertainty finding that the latter
affects the likelihood but not the size of stock adjustment. They consider three categories of durable goods: vehicles,
furniture and jewelry.

28Limiting our attention to households who sell the current house to buy new one, we observe that the average age
of the household head is 49.66 years for moving small and 43.92 years for moving big in SIPP, while it is 45.74 and
40.29 respectively in PSID.
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because in practice the absence of the ability to borrow against human capital leads to the main

difference between the classic GL framework and the empirical results.29 We do not aim at offering

a full characterization of all realistic features of optimal housing decisions and we prefer focusing

on qualitative insights into house returns predictability.

6.2 Effects of the Predictability Hypothesis and the Probability of Moving

The second set of hypotheses to be tested is related to the effects of predictability of housing returns

in the action bounds and the probabilities of moving derived in the portfolio choice problem. Let

us state hypotheses 2a and 2b to test whether the optimal bounds and the probabilities of moving

change under the different regimes in the growth in housing prices.

Hypothesis 2a. zh < zl. Therefore, the value of the ratio of wealth to housing holdings that

defines the upper bound in periods in which µt is high, zh, is significantly lower than the value of

the ratio that defines the upper bound in periods in which µt is low, zl. Equivalently, zh < zl for

the lower bound.30

Hypothesis 2b. The probability of increasing the agent’s housing holdings is higher in periods

of high growth of housing prices (i.e., hot markets) than in periods of low growth and agents move

to an even bigger house during periods of high growth.

To test these hypotheses, we follow two different approaches. Firstly, we develop a difference-in-

differences analysis to test Hypothesis 2a. The goal is to capture the interactions between the type

of moving (e.g., moving big or small) and the type of year (e.g., year cold or hot). Without loss of

generality, we focus on the test for the upper bound. Secondly, we estimate a Heckman two-stage

selection model to test Hypothesis 2b, where the first stage concerns the selection of homeowners

who sell the current house to move to a bigger one, and the second stage the size of adjustment.

We use PSID data for the difference-in-differences analysis because it covers more than 20 years

from 1984 to 2005. Conversely, we use SIPP data for the second test because it includes a higher

number of households who sell the current house to move to a bigger one.
29In the data, some agents hold negative values of financial wealth. These agents are borrowing against a positive

present value of lifetime non-financial wealth.
30Therefore, the value of the ratio of wealth to housing asset holdings that defines the lower bound in periods in

which µt is high, zh, is significantly different (and lower) from the value of the ratio that defines the lower bound in
periods in which µt is low, zl.
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6.2.1 Does predictability affect the action bounds? Difference-in-differences analysis

Let us consider the following reduced form model:

zit =γ0 + γ1 · yearHOTt + γ2 ·mBIGit + γ3 ·mSMALLit

+ γ4 ·mBIGit × yearHOTt + γ5 ·mSMALLit × yearHOTt + Γ ·Xit + uit, (26)

where zit is each family’s ex-ante value for the wealth-to-housing ratio. In order to capture periods

of persistent high appreciation in housing prices we introduce the variable yearHOTt . We define

yearHOT as a binary variable that is equal to one when we observe three consecutive years of

positive yearly real returns on the OFHEO house price index of the U.S. state where the household

lives and at least one year with a real return higher than 5%.31 Thus, we aim to exploit the

different degree of predictability across the U.S. States. mBIGit is a binary variable equal to 1 if

the household is moving to a house of a higher value than the one currently owned. Conversely

mSMALLit equals one if the household moves to a house of lower value than the currently owned.

Hence, we interact yearHOT with mBIGit and mSMALLit . In this regression, we include the same

control variables listed above.

The hypotheses testing consist on a difference-in-differences analysis. Table 8 reports its results.

We choose households that did not move in cold years as the control group. The negative sign in the

coefficient γ1 confirms that the upper and lower bounds are, on average, 0.159 lower in hot markets

than in cold markets. The positive sign in γ2 shows that households that moved big (increased his

housing holdings) had a 0.253 higher zit than households that did not move in a cold year. The main

results of this specific analysis arise from the terms in which we interact moveBIG with yearHOT

and moveSMALL with yearHOT . The term moveBIG × yearHOT captures the difference between

the following two terms: (i) the difference between the average zit for the upper boundary in cold

years and in hot years; and (ii) the difference between the average zit for non-movers in cold and

hot years. The negative sign in moveBIG× yearHOT indicates that the decrease in zit in the upper

boundary in the transition from cold to hot markets is lower than the decrease in zit for non-movers

in the transition from cold to hot markets. The opposite result holds for moveSMALL × yearHOT ,
31We have also constructed the same variable using OFHEO house price indexes at MSA level, however there is no

clear match between the MSAs defined by the OFHEO and the ones defined in PSID and SIPP.
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whose coefficient’s positive sign indicates that the decrease in zit in the lower boundary during a

transition from cold to hot markets is higher than the decrease for non-movers in cold and hot

years. These empirical results confirm the implications of the model in the sense that when the

upper and lower bounds move from cold to hot and from hot to cold markets do not move in

parallel and the size of the inaction region changes over time. The empirical results are significant

and the coefficients of the control variables are consistent to the other empirical analysis in this

paper. Moreover, the regional analysis shows that, compared to the Northeast (benchmark region),

households in the Midwest present higher wealth-to-housing ratios and households in the South

and the West present lower ratios.

6.2.2 Does predictability affect the probability of moving and the size of adjustment?

A Heckman two-stage selection model

To answer this question, we follow Bertola, Guiso, and Pistaferri (2005) and we implement a

Heckman two-stage selection model. We will focus our empirical approach on effects of housing

returns predictability on the frequency and the width of upward adjustment (i.e., increasing their

amount of housing holdings). We let the upward adjustment of the current housing stock occur

when a latent variable D∗i = X
′
itϕ+ uit, is driven to be larger than zero. The assumption that the

error term uit is normally distributed yields the probit model:

Pr(D∗i > 0) = φ(X
′
itϕ), (27)

where Xit is a vector of variables and φ(X
′
itϕ) is the standard normal cumulative density func-

tion evaluated at X
′
itϕ. In our framework, such a latent variable is interpreted as the distance

between the wealth-to-housing ratio, z, and the optimal return point, z∗. The model predicts

that adjustment is more likely to be observed, for a given z, when house prices experience high

appreciation. We re-introduce the dummy variable yearHOT to capture periods of persistent high

growth in housing prices of the U.S. State where the households live. In practice, households can

sell the current house located in a U.S. State and buy a bigger (smaller) house in another U.S.

State. Hence, it would be also important to control for the level of house prices of the U.S. State

to which the household is moving. This latter variable should affect the likelihood and the size of
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housing adjustment. However, this exclusion does not affect the qualitative results reported below

because we are considering households selling the current house to buy a bigger one in the same

U.S. Census Macro Region and the percentage of movers to a different U.S. State is substantially

low among owners (Table 3).32 Column 1 of Table 9 reports marginal effect estimates from the

probit regressions for increasing the amount of housing holdings. After controlling for observable

characteristics, the probability of upgrading increases with the value of the ratio of wealth to house

value, z, and with our second state variable yearHOT , as predicted by our theoretical model. Both

coefficients are highly statistically significant and economically important. In addition, households

living in the West are more likely to upgrade and the economic effect is also substantial.

The probit regression is the first step to test Hypothesis 2b. Our model also delivers sign

predictions for the size of the adjustment conditional on adjusting. It predicts that persistent

higher growth in housing prices decreases the size of the adjustment. However, the disturbance of

the regression equation for the size of the adjustment depends upon unobserved heterogeneity. We

treat the problem adopting Heckman selectivity corrections in the regression. We use the value

of z prior to adjustment as selection variable because theory predicts that it affects the likelihood

of adjusting but not the size of adjustment if it occurs. Following Bertola, Guiso, and Pistaferri

(2005), we use as independent variable the log of the adjustment, ln(z̄ − z∗).33 The results of

the second stage of the Heckman selectivity regressions are reported in Column 2.34 The most

important effect is captured by the variable yearHOT . The effect is statistically significant and

economically sizable. It implies that the distance between the upper bound zi and the optimal

adjustment point z∗ is lower in periods of persistent high growth in house prices.
32In our set up, we abstract from introducing the option of selling the house at the price Pt in the household’s

current market and buying a bigger or smaller one at the price P ′t in the region to which the household relocates in the
next move. In this set up, the indirect utility of the household depends on six state variables, V (Wt, Pt, Ht, P

′
t , j, k),

where j is the regime, high or low, characterizing house price Pt, while k is the regime, high or low, characterizing
house price P ′t . A similar model without house returns predictability is analyzed by Flavin and Nakagawa (2008).

33In the second stage, we do not include households who sell the current house to buy a bigger one but whose
wealth-to-housing ratio increases between the two purchases. We have two possible explanations. The first one is
that total wealth is not following the continuous diffusion process assumed by our model but positive jumps might
occur in the wealth process. The second one is that total wealth might be affected by measurement error.

34We implement a standard GLS procedure to calculate appropriate standard errors for the estimated coefficients
(see Greene (2008)).

40



6.3 Portfolio Choice Hypothesis

Do consumers hold more risky stock before moving to a bigger house? Do they hold more risk-free

assets before moving to a bigger house? To answer these questions, we develop the following two

tests, in which we study the risky stock and risk-free securities holdings relative to wealth and their

link to the decision of buying a bigger or smaller house.

We study the portfolio holdings of the agents that are on the upper bound in hypothesis 3a.

Hypothesis 3a. θmBIG/zit > θit/zit. Therefore, the risky stock holding relative to wealth

before moving to a bigger house, θmBIG/zit, is significantly different (and higher) from the average

risky stock holding relative to wealth of households who do not move, θit/zit.

To test hypothesis 3a, we estimate the following reduced form model:

θit
zit

= γ0 + γ1 ·mBIG + γ2 ·mSMALL + Γ ·Xit + uit. (28)

With this reduced form model, we test empirically one of the implications of the theoretical model

that was shown in Figure 5: the risky stock holding relative to wealth increases in the empirically

relevant region.

The results of the test of hypothesis 3a are shown in Table 10. As before, we run the pooled

regression with year fixed effects and also year by year. The first column shows the results for the

pooled data. It shows that the average holdings of risky stock on wealth for non-movers is 5.9%

for PSID data and 9.5% for SIPP data. The average holdings of risky stock relative to wealth

for households that moved to a bigger house is 1.9% higher, that is 7.8%. For SIPP movers to a

bigger house the risky holdings account for 11.7% of their total wealth. Looking at the coefficients

year by year in the subsequent columns, we observe that the average holdings of risky stock for

non-movers is in the range [5.3%, 12.9%] for PSID and [2.8%, 9.2%] for SIPP. Households that move

to bigger houses have higher risky asset holdings. Uncertainty around the estimates for the lower

bound does not allow us to make a statement around how the share of risky assets in the portfolio

of an investor who just moved to a smaller house should be. In Table 11, we report results for the

same regressions for households who have a positive risky stock holding. Approximately, two-thirds

of the households are excluded from the PSID and SIPP sample. The coefficient associated with
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moving to a bigger house, γ1, is still significant in PSID, but not in SIPP. However, estimating

the regression only on the subsample of stock market participants yields biased estimates because

changes in home equity or mortgage affect stock market participation rates, generating selection

effects.

Using the subsample of homeowners who sell the current house to buy another one, we observe

a dispersed distribution of changes in risky stock holding relative to wealth from the year before to

year after home purchase. According to the model, we would expect a decrease in the risky stock

holding because a household primarily sells stocks to finance house purchase. Then households

who buy more expensive house in a period of high house appreciation should reduce more risky

stock holding. Instead, we observe an increase in the risky stock holding approximately for half

of the households in our subsample. Recently, Chetty and Szeidl (2010) use SIPP data to study

how portfolio allocations change when households buy houses. They provide evidence that housing

reduces the amount households invest in risky stocks substantially. However, their sample is dif-

ferent from the one considered in this paper, because they include households who were previously

renting before home purchase.35 According to Table 3, including the renters increases more than

one third the sample of homeowners who move to a new house.

We can study the risk-free holdings of households following the same empirical strategy used

for hypothesis 3a.

Hypothesis 3b. bmBIG/zit > bit/zit. Therefore, the optimal holding of risk-free securities

before moving to a bigger house bmBIG/zit is significantly different (and higher) from the average

holding of risk-free securities of the consumers who do not move bit/zit.

To test hypothesis 3b, we estimate the following reduced form model:

bit
zit

= γ0 + γ1 ·mBIG + γ2 ·mSMALL + Γ ·Xit + uit. (29)

Table 12 shows the results of the test of hypothesis 3b. The first column shows the results

for the pooled data for all the years. It shows that households who move to a bigger house hold

an the average of 3.9% more of risk-free securities relative to wealth than non-movers for PSID
35Specifically, they set the house value to zero in the year before home purchase for those who were previously

renting.
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data. For the case of SIPP data, the average holding is 14.6%, while the mover to a bigger house

holds 3.4% more. Looking at the coefficients over time, we observe that the average holdings

of risk-free securities relative to wealth for PSID non-movers is in the range [15.8%, 23.8%]. For

SIPP households, the average holdings of risk-free securities relative to wealth is in the range

[15.5%, 21.5%]. The risk-free holdings for the sub-sample who moved to a bigger house range from

being not significantly different from zero from 1984 to 2001 to as much as 9.2% above the average

holdings of the non-movers in 2005. On the other hand, for those who moved to a smaller house,

the coefficient γ2 is slightly significant in SIPP, but not in PSID. Therefore, households that move

to bigger houses have higher risk-free asset holdings right before moving up. In Table 13, we report

results for the same regressions accounting for the mortgage balance on the primary residence.

7 Conclusions

A literature that analyzes the optimal portfolio choice decisions of agents in an economy with

durable consumption goods and transaction costs has been developed following the model in Gross-

man and Laroque (1990) (GL model). Our paper provides a study of an extension of this model

to make it more realistic. Specifically, we incorporate predictability in housing prices (i.e., prices

of the durable consumption good are constant in the GL model) and we investigate the effects of

housing returns predictability in the portfolio choice decisions.

We show that economic agents consider two state variables to make their decisions under pre-

dictability in housing returns and transaction costs. These two variables are the wealth-to-housing

holdings ratio and the time-varying mean rate of housing price growth. As in the GL model, agents

increase (decrease) their housing asset holdings only when their wealth-house ratio reach an optimal

upper (lower) bound; consequently, they do not trade housing when their wealth-to-housing ratio

is between the upper and lower bounds. One of the main contributions of our model is to show

that these bounds are time-varying and decrease when housing prices are expected to rise, that

is, the bounds are low in “hot” housing markets and high in “cold” markets. We also show that

relative risk aversion is different in states of “hot” and “cold” housing markets, which explains the

differences in optimal portfolio choices between both states.

Additionally, we use PSID and SIPP data to test the implications of our model empirically. In
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particular, we examine implications for portfolio rules and housing consumption in the presence of

predictability in housing returns and transaction costs. The model and its empirical implications are

relevant for policy makers, lenders, and asset managers because they provide explanations for the

behavior of households in the presence of two important features of housing assets: predictability

in housing returns and costs associated to housing transactions.
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Appendices

A Predictability Results

In this section we present some robustness results for the predictability in house prices. In particular

we will focus on the two data sets used in the main body of the paper. The first one is from Campbell

et al. (2009) and uses annualized quarterly data from 1978 to 2001 on housing prices from Office

of Federal Housing Enterprise Oversight (OFHEO) and rents from the Bureau of Labor Statistics

(BLS). The data are available at http://morris.marginalq.com/whatmoves.html. The second source

for price-rent series is constructed with residential investment values in the Flow of Funds and rents

from National Income and Product accounts. Both sets produce similar results for the sample used

in the paper. We present in this appendix results for the entire sample, which includes the last 6

years, and we also present detailed results at the MSA level (only for the first data set, for which

we have MSA level data available). Results are robust to the data set used, to the regional level

considered, but not to the sample size. Including the last results in a sign change. As we explain in

section 2, that is due to the non-stationarity of rents-price ratio during the recent episode of housing

prices bubble. When current price growth is explained by future price growth, predictability power

of rent-price ratio disappears.

Table A shows the results of the same predictability regressions in table 1 with Flow of Funds

and NIPA data.

In table A we use the entire sample available for both data sets. As mentioned above, there is

a substantial change in the results when considering the last years of the housing bubble.

We also provide results at the MSA level (see table table 16). In general each region shows

results that are consistent with the aggregate results, except some exceptions like Denver or Miami.
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B Derivation of the Model

B.1 Model Without Transaction Costs (ε = 0)

The value function is defined by

V̄ (W0, P0, i) = sup
Ct,Θt,Ht

E

[∫ ∞
0

e−ρtu(Ct, Ht)dt
]
, i = h, l. (30)

The associated system Hamilton-Jacobi-Bellman equations is the following:

ρV̄ (·, l) = sup
Ct,Θt,Ht

{
U(Ct, Ht) +DV̄ (·, l) + λl(V̄ (·, h)− V̄ (·, l))

}
, (31)

ρV̄ (·, h) = sup
Ct,Θt,Ht

{
U(Ct, Ht) +DV̄ (·, h) + λh(V̄ (·, l)− V̄ (·, h))

}
, (32)

where

DV̄ (·, i) = [r(Wt −HtPt) + Θt(αS − r) + (µi − δ)HtPt − Ct]V̄W (·, i)

+ µiPtV̄P (·, i) +
1
2

(Θ2
tσ

2
S + 2HtPtΘtρPSσSσP +H2

t P
2
t σ

2
P )V̄WW (·, i)

+
1
2
P 2
t σ

2
P V̄PP (·, i) + (ΘtPtρPSσSσP +HtP

2
t σ

2
P )V̄WP (·, i), i = h, l. (33)

We can use the homogeneity properties of the value function to reduce the problem with four state

variables (Wt, Ptn,Htn, i) to one with two state variables, zt = Wt/(PtHt) and i, since

V̄ (Wt, Pt, i) = P
β(1−γ)
t V̄i

(
Wt

Pt
, 1, i

)
= P

β(1−γ)
t v̄ (xt, i) , i = h, l. (34)

Let introduce the scaled controls c̄t = Ct/Pt and θ̄i,t = Θt/Pt. Substituting and simplifying we

obtain

ρ̄v̄(xt, l) = sup
c̄t,θ̄t,Ht

{
U(c̄t, Ht) +Dv̄(xt, l) + λl(v̄(xt, h)− v̄(xt, l))

}
, (35)

ρ̄v̄(xt, h) = sup
c̄t,θ̄t,Ht

{
U(c̄t, Ht) +Dv̄(xt, h) + λh(v̄(xt, l)− v̄(xt, h))

}
, (36)
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where

Dv̄(xt, i) =((xt −Ht)(r − µi + σ2
P (1 + β(γ − 1))) + θ̄t(αS − r − (1 + β(γ − 1))ρPSσSσP )− c̄t)v̄x(xt, i)

+
1
2

((xt −Ht)2σ2
P − 2(xt −Ht)θ̄tρPSσPσS + θ̄2

t σ
2
S)v̄xx(xt, i), i = h, l. (37)

Let

ρ̄ = 0.5(−2ρ+ β(−1 + γ)(−2µi + (1 + β(γ − 1))σ2
P ), (38)

We derive explicit expressions for both the value function and the optimal policies. We first guess

that the optimal controls are given by

c̄∗(xt, i) = αicxt, H∗(xt, i) = αihxt/Pt, θ̄∗(xt, i) = αiθxt (39)

and the value function for the no transaction costs problem is given by

v̄(xt, i) = αiv
x1−γ
t

1− γ , (40)

where i = h, l. Then, we verify that the value function and the candidate control policies are the

optimal policies for the no transaction costs case.

B.2 Model With Transaction Costs (ε > 0)

The value function is defined by

V (W0, P0, H0, i) = sup
Ct,Θt,Hτ ,τ

E

[∫ τ

0
e−ρtu(Ct, Ht)dt+ e−ρτV (Wτ , Pτ , Hτ , i)

]
, i = h, l. (41)

We first solve the problem in the inaction region and then we try to characterize the upper and

lower bounds of the inaction region and the optimal return point between them. The associated
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system Hamilton-Jacobi-Bellman equations is the following:36

ρV (·, l) = sup
Ct,Θt

{
U(Ct, Ht) +DV (·, l) + λl(V (·, h)− V (·, l))

}
, (42)

ρV (·, h) = sup
Ct,Θt

{
U(Ct, Ht) +DV (·, h) + λh(V (·, l)− V (·, h))

}
, (43)

where

DV (·, i) = [r(Wt −HtPt) + Θt(αS − r) + (µi − δ)HtPt − Ct]VW (·, i)

+ µiPtVP (·, i)− δHtVH(·, i) +
1
2

(Θ2
tσ

2
S + 2HtPtΘtρPSσSσP +H2

t P
2
t σ

2
P )VWW (·, i)

+
1
2
P 2
t σ

2
PVPP (·, i) + (ΘtPtρPSσSσP +HtP

2
t σ

2
P )VWP (·, i), i = h, l. (44)

The component λi(V (·, j) − V (·, i)) reflects the impact of the housing price drift switch on the

value functions. This term is the product of the instantaneous probability of a regime shift and the

change in value function occurring after a regime switch. We can use the homogeneity properties

of the value function to reduce the problem with four state variables (Wt, Pt, Ht, i) to one with two

state variables, zt = Wt/(PtHt) and i since

V (Wt, Pt, Ht, i) = H1−γ
t P

β(1−γ)
t V

(
Wt

(PtHt)
, 1, 1, i

)
= H1−γ

t P
β(1−γ)
t v (zt, i) , i = h, l. (45)

Let introduce the scaled controls ĉt = Ct/(PtHt) and θ̂t = Θt/(PtHt). Substituting and simplifying,

we obtain

ρ̃v(zt, l) = sup
ĉt,θ̂t

{
u(ĉt) +Dv(zt, l) + λl(v(zt, h)− v(zt, l))

}
, (46)

ρ̃v(zt, h) = sup
ĉt,θ̂t

{
u(ĉt) +Dv(zt, h) + λh(v(zt, l)− v(zt, h))

}
, (47)

where

u(ĉt) =
ĉ
β(1−γ)
t

1− γ , (48)

36Thereafter, the notation V (·, i) refers to V (Wt, Pt, Ht, i).
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Dv(zt, i) =((zt − 1)(r + δ − µi + σ2
P (1 + β(γ − 1)))

+ θ̂t(αS − r − (1 + β(γ − 1))ρPSσSσP )− ĉt)vz(zt, i)

+
1
2

((zt − 1)2σ2
P − 2(zt − 1)θ̂tρPSσPσS + θ̂2

t σ
2
S)vzz(zt, i), i = h, l. (49)

Let

ρ̃ = 0.5(−2ρ− 2(γ − 1)(µi − δ + β(γ − 1)(1 + β(γ − 1))σ2
P ). (50)

The first order conditions are

ĉ∗(zt, i) =
(
vz(zt, i)

β

)1/(β(1−γ)−1)

, (51)

θ̂∗(zt, i) = −(αS − r)
vz(zt, i)

σ2
Svzz(zt, i)

− (1− β(1− γ))ρPSσP
vz(zt, i)

σ2
Svzz(zt, i)

+ (zt − 1)
ρPSσP
σS

, (52)

for i = h, l.

We need to identify the properties of the inaction region. It follows from (41) that

V (W0, P0, H0, i) =

sup
Ct,Θt,Hτ ,τ

E

[∫ τ

0
e−ρτu(Ct, H0e

−δt)dt+ e−ρτV (Wτ− − εPτHτ−, Pτ , Hτ , i)
]
, i = h, l. (53)

We get

P
β(1−γ)
0 H1−γ

0 v(z0, i) =

sup
ĉt,θ̂t,Hτ ,τ

E

[∫ τ

0
e−ρτ

P
β(1−γ)
τ (ĉtH0e

−δt)1−γ

1− γ dt+ e−ρτP β(1−γ)
τ H1−γ

τ v(zτ , i)

]
, i = h, l. (54)

Following Damgaard, Fuglsbjerg, and Munk (2003), let

e−ρτP β(1−γ)
τ H1−γ

τ v(zτ , i) = e−ρτP β(1−γ)
τ H1−γ

τ−

(
Hτ−
Hτ

)γ−1

v

(
Wτ− − εPτHτ−

PτHτ
, i

)
= e−ρτP β(1−γ)

τ H1−γ
τ−

(
Hτ−
Hτ

)γ−1

v

(
Hτ−
Hτ

(
Wτ−
PτHτ−

− ε
)
, i

)
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and we can derive

e−ρτP β(1−γ)
τ (H0e

−δτ )1−γ (zτ− − ε)1−γ
(
Hτ−
Hτ

(zτ− − ε)
)γ−1

v

(
Hτ−
Hτ

(zτ− − ε) , i
)
, i = h, l.

Let re-express our Bellman equation

P β(1−γ)v(z0, i) =

sup
c̄t,θ̄t,τ

E

[∫ τ

0
e−ρ̂τ

P
β(1−γ)
τ c̄1−γ

t

1− γ dt+ e−ρ̂τP β(1−γ)
τ Mi

(zτ− − ε)1−γ

1− γ

]
, (55)

where

M(i) = sup
Hτ≤He−δτ (zτ−ε)/ε

(1− γ)
(
Hτ−
Hτ

(zτ− − ε)
)γ−1

v

(
Hτ−
Hτ

(zτ− − ε) , i
)

= (1− γ) sup
z≥ε

zγ−1v(z, i), i = h, l, (56)

and ρ̂ = ρ+ δ(1− γ).

B.3 Algorithm for the Numerical Resolution

We modify the Grossman Laroque algorithm to solve our problem. The algorithm is a stepwise

numerical procedure to find the optimal values (M(h), zh, zh, z∗h) and (M(l), zl, zl, z∗l ):

1. Guess M(h) = M(h)0 and M(l) = M(l)0.

2. Solve the free bound problem with M(h) = M(h)0 and M(l) = M(l)0 as follows:

(i) Guess zh = zh,0 and zl = zl,0;

(ii) Solve the ODEs Eq.(13) using as initial conditions the four of equations defined by Eq.(18)

until the value matching conditions are satisfied. We adopt a finite difference scheme to solve

the system of ODEs;

(iii) If the smooth pasting conditions specified by Eq.(19) are satisfied, then the candidate

value functions vM(h)0(z, h) and vM(l)0(z, l) are found, otherwise repat steps (i) and (ii).

3. Compute the implied M∗(h)0 = (1−γ) supz zγ−1v(z, h) = (1−γ)z∗(γ−1)
h v(z∗h, h) and M∗(l)0 =
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(1 − γ) supz zγ−1v(z, l) = (1 − γ)z∗(γ−1)
l v(z∗l , l) using Eq.(16). If M∗(h)0 = M(h)0 and

M∗(l)0 = M(l)0, the problem is solved, otherwise go to step 1.

As a starting point, we use the solution to the problem of no transaction costs, ε = 0. That

solution consists of the optimal ratio of housing to wealth αih, the optimal ratio of risky assets αiθ

and the optimal ratio of numeraire consumption αic, for the two possible realizations of the regime,

i = h, l. The first set of iterations uses a fixed portfolio policy. For initial values of M(i) and z∗i , we

use M(i) = αiv and z∗i = 1/αih, where i = h, l. However, there is little to guide the initial estimations

(i.e., guesses) about zi and zi, except to require zi < z∗i and zi > z∗i . After the iterative procedure

has converged, the solution is used to construct an approximation to the policy function θ̂∗(zt, i).

Then, we adopt a value iteration and a policy iteration procedure to obtain (zi, zi,M(i), z∗i ).

C Robustness Checks

In this appendix we make different robustness checks of the results that we obtain in our study. We

focus on analyze how robust our results are with respect to two important issues. First, we check

the choice of two regimes (i.e., high versus low housing prices growth) instead of three regimes (i.e.,

high versus medium versus low housing prices growth). Second, we develop a regional analysis to

study how robust our results are for the different main regions.

Two main conclusions arise from this robustness study. First, the contributions of the paper

can be exposed using a parsimonious two-regime model. Hence, the use of a model with three (or a

higher number) of regimes, would have not conceptually improved the results. Second, the regional

analysis not only confirms the regional robustness of our results, but also provides some interesting

empirical facts. We use the results reported on tables 17 and 18, and figures 6 and 7 to reach these

conclusions.

Table 17 shows the parameter values that we obtain if we extend the 2-regime switching model

developed in the paper to a 3-regime switching model (i.e., high, medium, and low housing price

growth regimes). This table is equivalent to Table 4 for a 2-regime model shown in the paper. We

observe that the growth in housing prices parameters (µh, µm, and µl) that we obtain for a 3-regime

model only expand the spectrum of values that we obtained in Table 4 for µh and µl. We find that

the conditional probability of switching straight from a high to a low regime, λh→l, is high (e.g.,
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19.17% in the West and 30.17% for the Northeast) while the conditional probability of switching

from a high to a medium regime, λh→m, is zero in all regions, except for South. Oppositely, the

conditional probability of switching straight from a low to a high regime, λl→h, is zero or very low

for all regions while the conditional probability of switching from a low to a medium regime, λl→m,

is between 6% and 10% for all the regions. Additionally, the conditional probability of switching

from the medium regime to either a high or a low regime is quite high for all regions (i.e., it is

between 6.42% and 10.56% for all cases except for moving to the high regime in the Midwest and

moving to the low regime in the Northeast in which these calibrated probabilities are close to zero).

Figure 6 shows the contemporaneous estimated probability of being in a high regime for the four

U.S. Census Macro Regions over the period 1975-2007. This figure is equivalent to Figure 3, which

showed U.S. aggregate housing markets for the period 1930-2007. Three main issues arise from this

graphs: (i) the real estate boom in the late 1970s is captured in all regions; (ii) only the Northeast

region showed high probabilities of being in a boom (i.e., a high regime) in the mid-1980s; and (iii)

all regions but the Midwest present high probabilities of being in a boom in the 2000s.

Figure 7 extends Figure 6 for a 3-regime model. It shows the contemporaneous estimated

probability of being in a high regime or in a medium regime for the four U.S. Macro Census Macro

Regions over the period 1975-2007. We see real estate booms are captured by high probabilities

of being in high or in medium regimes. We observe similar patterns for the West and Northeast

regions. The South is similar too, except for the fact that it was not affected by any real estate

boom in the 1980s. Finally, the Midwest presents a different pattern than the other three regions:

except for the 1970s real estate boom, it seems to always be between low and medium regimes of

housing price growth.

Table 18 reports the numerical results of the model for the regional analysis under a 3-regime

model. This tables extends to a 3-regime setting the results shown in Part (E) of Table 6. We

observe that the parameters that define the lower and upper bounds (zi, and zi) as well as the

optimal return point (z∗i ) that we obtain for a 3-regime model expand the spectrum of values that

we obtained in Table 6 the 2-regime model (high versus low). We also find that the West and the

Northeast present the low values for the upper and lower bounds as well as the optimal return

points. Oppositely, the Midwest and the South present high values for these parameters.
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Figure 6: Probability of being in a high regime and house price returns. Regional
analysis. Probabilities of being in a high regime in red lines and values according to the right
hand side vertical axis. Housing returns in black lines and values according to the left hand side
vertical axis. Graphs shown in the following order: West (Top), Northeast, South and Midwest
(Bottom).
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Figure 7: Probability of being in a high and medium regimes and house price returns.
Regional analysis. Probabilities of being in a high regime in red lines. Probabilities of being
in a medium regime in blue dotted lines. Values of probabilities according to the right hand side
vertical axis. Housing returns in black lines and values according to the left hand side vertical axis.
Graphs shown in the following order: West (Top), NorthEast, South and Midwest (Bottom).
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Table 7: Test of Hypothesis 1. Coefficients are estimated by using a standard OLS model and ex-ante

(e.g., before moving) values of zit as endogenous variable. Standard errors are reported in parentheses. ∗∗∗ denotes

significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. mBIGit (mSMALLit) is a dummy variable

equal to one if the family is increasing (decreasing) its housing holdings, i.e., moving to a bigger (smaller) house. The

pooled regressions include year dummies.

(a) PSID data

All 1984 1989 1994 1999 2001 2003 2005
constant (γ0) 1.983*** 1.959*** 2.059*** 1.985*** 2.017*** 1.955*** 1.816*** 1.763***

(0.043) (0.091) (0.089) (0.096) (0.085) (0.080) (0.074) (0.073)
Move big (γ1) 0.214*** 0.334* 0.398* 0.395* 0.317* 0.118 0.159 0.082

(0.046) (0.151) (0.160) (0.180) (0.127) (0.111) (0.094) (0.096)
Move small (γ2) 0.004 -0.162 0.186 -0.038 -0.010 -0.148 0.172 0.034

(0.074) (0.273) (0.295) (0.297) (0.195) (0.155) (0.169) (0.148)
∆ Family 0.017 -0.010 0.023 0.076 -0.006 0.022 0.013 0.034

(0.017) (0.053) (0.057) (0.071) (0.042) (0.038) (0.037) (0.037)
∆ Retired -0.074 -0.104 -0.085 -0.227 -0.091 0.007 -0.006 -0.095

(0.046) (0.134) (0.134) (0.160) (0.119) (0.106) (0.116) (0.107)
∆ Married 0.054 0.048 -0.395 -0.322 0.466* -0.293 0.408* -0.036

(0.089) (0.288) (0.333) (0.346) (0.215) (0.209) (0.189) (0.192)
∆ Employment -0.179*** -0.148 -0.268** -0.071 -0.227* -0.171* -0.250** -0.078

(0.032) (0.084) (0.085) (0.092) (0.095) (0.081) (0.082) (0.081)
Agey<30 -1.351*** -1.142*** -1.412*** -1.420*** -1.549*** -1.396*** -1.358*** -1.246***

(0.040) (0.100) (0.111) (0.130) (0.118) (0.107) (0.099) (0.093)
Age30<y<50 -0.924*** -0.713*** -0.972*** -0.982*** -1.041*** -0.974*** -0.873*** -0.888***

(0.024) (0.071) (0.068) (0.074) (0.064) (0.059) (0.055) (0.056)
Midwest 0.166*** -0.031 0.261** 0.243* 0.266** 0.171 0.095 0.150

(0.035) (0.099) (0.099) (0.105) (0.095) (0.089) (0.084) (0.085)
South -0.024 -0.157 -0.006 0.180 -0.046 -0.025 -0.040 -0.057

(0.033) (0.092) (0.090) (0.099) (0.089) (0.084) (0.079) (0.079)
West 0.041 0.036 0.174 0.197 -0.023 -0.007 -0.020 0.010

(0.039) (0.111) (0.110) (0.120) (0.104) (0.098) (0.091) (0.091)
R2 0.466 0.468 0.505 0.478 0.454 0.458 0.459 0.455
Num. Obs. 20362 2507 2587 2458 3130 3234 3228 3218

(b) SIPP data

All years 1997 1998 1999 2002 2003 2005
constant (γ0) 1.961*** 1.886*** 1.843*** 1.928*** 1.848*** 1.737*** 1.671***

(0.130) (0.031) (0.032) (0.031) (0.032) (0.031) (0.025)
Move big (γ1) 0.243*** 0.307** 0.280** 0.297** -0.026 0.261** 0.285***

(0.037) (0.101) (0.097) (0.097) (0.101) (0.091) (0.071)
Move small (γ2) -0.073 -0.039 0.022 -0.134 -0.062 0.022 -0.219*

(0.052) (0.131) (0.138) (0.137) (0.129) (0.137) (0.104)
∆ Family 0.002 0.005 0.013 -0.021 0.007 -0.025 0.008

(0.010) (0.024) (0.025) (0.030) (0.025) (0.029) (0.017)
∆ Retired 0.078* 0.015 0.127 0.042 0.019 0.123 0.144*

(0.035) (0.080) (0.089) (0.102) (0.085) (0.101) (0.071)
∆ Married -0.039 -0.115 -0.010 -0.231 0.088 -0.160 0.011

(0.047) (0.115) (0.123) (0.153) (0.111) (0.144) (0.084)
∆ Employment -0.129*** -0.200*** -0.175** -0.161** -0.143*** -0.123** -0.073*

(0.019) (0.061) (0.062) (0.061) (0.043) (0.045) (0.032)
Agey<30 -1.257*** -1.342*** -1.305*** -1.367*** -1.292*** -1.236*** -1.069***

(0.021) (0.053) (0.057) (0.057) (0.054) (0.053) (0.040)
Age30<y<50 -0.766*** -0.845*** -0.853*** -0.842*** -0.770*** -0.715*** -0.613***

(0.010) (0.025) (0.027) (0.026) (0.026) (0.025) (0.020)
Midwest 0.133*** 0.167*** 0.130*** 0.109** 0.114** 0.117** 0.153***

(0.015) (0.036) (0.038) (0.037) (0.039) (0.037) (0.029)
South -0.093*** -0.088* -0.112** -0.163*** -0.059 -0.093** -0.054

(0.014) (0.035) (0.036) (0.036) (0.036) (0.035) (0.028)
West -0.131*** -0.091* -0.115** -0.187*** -0.164*** -0.133*** -0.107***

(0.016) (0.040) (0.042) (0.041) (0.042) (0.040) (0.032)
R2 0.463 0.453 0.431 0.469 0.464 0.461 0.504
Num. Obs. 105587 18394 17117 16457 15646 15401 22572
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Table 8: Test of Hypothesis 2a. Difference-in-differences regressions. Coefficients estimated using a standard

OLS model with ex-ante (e.g., before moving) values of zit. Standard errors are reported in parentheses. ∗∗∗ denotes

significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. The regression includes year dummies. Survey:

PSID.

All
b/se

constant (γ0) 2.043***
(0.044)

Year hot (γ1) -0.159***
(0.033)

Move big (γ2) 0.253***
(0.054)

Move small (γ3) -0.096
(0.085)

Move big x Year hot (γ4) -0.207
(0.106)

Move small x Year hot (γ5) 0.446*
(0.179)

∆ Family 0.010
(0.017)

∆ Retired -0.070
(0.047)

∆ Married 0.074
(0.090)

∆ Employment -0.179***
(0.032)

Agey<30 -1.358***
(0.041)

Age30<y<50 -0.935***
(0.024)

Midwest 0.111**
(0.037)

South -0.087*
(0.035)

West 0.044
(0.039)

R2 0.469
Num. Obs. 19707
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Table 9: Test of Hypothesis 2b. Probit for the upgrading of housing and Heckman selectivity model. The

table reports marginal effects. Standard errors are reported in parantheses. All the regressions include a constant

and year dummies. ∗∗∗ denotes significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. The Heckman

selectivity model includes fixed effects for years. Source: SIPP. Period: 1997-2005.

Probit model Heckman selectivity model
Probability of adjustment Size of the adjustment

Pr(D∗ > 0) ln(z̄ − z∗)

z 0.002***
(0.000)

Year hot 0.004*** -0.797***
(0.001) (0.233)

∆ Family 0.005*** -0.648***
(0.001) (0.157)

∆ Retired 0.006 -1.077**
(0.003) (0.657)

∆ Married 0.008 -1.284**
(0.005) (0.753)

∆ Employment 0.005** -0.765**
(0.002) (0.308)

Agey<30 0.045*** -4.759***
(0.004) (0.559)

Age30<y<50 0.018*** -2.453***
(0.001) (0.318)

Midwest 0.004*** -0.662**
(0.001) (0.293)

West 0.010*** -1.786***
(0.002) (0.342)

South 0.003* -0.534**
(0.001) (0.286)

R2 0.286
Num. Obs. 105068 1122
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Table 10: Results of Test 3a. Coefficients estimated using a standard OLS model and ex-ante (e.g., before

moving) values of the ratio of total risky stock holdings relative to wealth, θit/zit. Standard errors are reported in

parentheses.
∗∗∗

denotes significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. mBIGit (mSMALLit)

is a dummy variable equal to one if the family is increasing (decreasing) its housing holdings, i.e., moving to a bigger

(smaller) house. The pooled regressions include year dummies.

(a) PSID data

All 1984 1989 1994 1999 2001 2003 2005
constant (γ0) 0.059*** 0.053*** 0.062*** 0.129*** 0.093*** 0.081*** 0.068*** 0.067***

(0.004) (0.006) (0.007) (0.011) (0.008) (0.007) (0.008) (0.006)
Move big (γ1) 0.019*** -0.007 0.036** 0.087*** 0.007 0.022* 0.015 0.010

(0.004) (0.009) (0.012) (0.021) (0.012) (0.010) (0.010) (0.008)
Move small (γ2) 0.010 -0.007 0.015 0.001 -0.000 0.017 0.034* 0.003

(0.007) (0.017) (0.023) (0.035) (0.018) (0.014) (0.017) (0.013)
∆ Family 0.003* 0.001 0.009* 0.007 0.007 0.003 -0.002 0.001

(0.002) (0.003) (0.004) (0.008) (0.004) (0.004) (0.004) (0.003)
∆ Retired 0.005 0.009 0.017 0.009 0.010 -0.023* 0.009 0.016

(0.004) (0.008) (0.010) (0.019) (0.011) (0.010) (0.012) (0.009)
∆ Married -0.002 -0.010 -0.043 -0.055 -0.002 -0.029 0.032 0.031

(0.008) (0.018) (0.025) (0.040) (0.020) (0.019) (0.019) (0.016)
∆ Employment -0.016*** -0.007 -0.013* -0.025* -0.023** -0.017* -0.019* -0.012

(0.003) (0.005) (0.006) (0.011) (0.009) (0.007) (0.008) (0.007)
Agey<30 -0.040*** -0.022*** -0.025** -0.062*** -0.043*** -0.042*** -0.036*** -0.047***

(0.004) (0.006) (0.008) (0.015) (0.011) (0.010) (0.010) (0.008)
Age30<y<50 -0.018*** -0.008 -0.013* -0.011 -0.016** -0.018*** -0.027*** -0.024***

(0.002) (0.004) (0.005) (0.009) (0.006) (0.005) (0.006) (0.005)
Midwest -0.004 -0.003 0.016* -0.009 -0.015 -0.003 -0.007 -0.007

(0.003) (0.006) (0.008) (0.012) (0.009) (0.008) (0.009) (0.007)
South -0.021*** -0.025*** -0.014* -0.039*** -0.031*** -0.022** -0.008 -0.013

(0.003) (0.006) (0.007) (0.012) (0.008) (0.008) (0.008) (0.007)
West -0.001 -0.001 0.008 -0.007 -0.008 -0.002 0.003 -0.000

(0.004) (0.007) (0.008) (0.014) (0.009) (0.009) (0.009) (0.008)
R2 0.150 0.121 0.170 0.214 0.152 0.145 0.099 0.132
Num. Obs. 20345 2491 2584 2460 3130 3234 3228 3218

(b) SIPP data

All 1997 1998 1999 2002 2003 2005
constant (γ0) 0.095*** 0.081*** 0.092*** 0.077*** 0.071*** 0.062*** 0.028***

(0.015) (0.004) (0.005) (0.003) (0.004) (0.003) (0.002)
Move big (γ1) 0.022*** 0.030* 0.035* 0.032** 0.013 0.005 0.019***

(0.004) (0.014) (0.014) (0.011) (0.012) (0.009) (0.005)
Move small (γ2) -0.002 -0.001 -0.006 -0.012 0.011 -0.005 -0.003

(0.006) (0.018) (0.020) (0.015) (0.015) (0.014) (0.007)
∆ Family 0.002 0.004 0.008* -0.004 -0.004 0.004 0.000

(0.001) (0.003) (0.004) (0.003) (0.003) (0.003) (0.001)
∆ Retired 0.006 0.007 0.022 0.012 -0.007 0.005 -0.002

(0.004) (0.011) (0.013) (0.011) (0.010) (0.010) (0.005)
∆ Married -0.006 -0.017 -0.021 -0.007 -0.005 -0.003 0.010

(0.006) (0.015) (0.018) (0.017) (0.013) (0.014) (0.005)
∆ Employment -0.006** -0.012 -0.011 -0.002 -0.006 -0.007 -0.002

(0.002) (0.008) (0.009) (0.007) (0.005) (0.004) (0.002)
Agey<30 -0.023*** -0.019** -0.034*** -0.027*** -0.024*** -0.023*** -0.016***

(0.002) (0.007) (0.008) (0.006) (0.006) (0.005) (0.003)
Age30<y<50 -0.006*** -0.006 0.006 -0.009** -0.012*** -0.010*** -0.007***

(0.001) (0.003) (0.004) (0.003) (0.003) (0.003) (0.001)
Midwest 0.003 -0.000 0.001 0.003 0.006 0.006 0.003

(0.002) (0.005) (0.006) (0.004) (0.004) (0.004) (0.002)
South -0.008*** -0.012* -0.012* -0.008* -0.007 -0.005 -0.004*

(0.002) (0.005) (0.005) (0.004) (0.004) (0.003) (0.002)
West -0.000 0.003 -0.001 0.004 -0.002 -0.007 0.000

(0.002) (0.005) (0.006) (0.005) (0.005) (0.004) (0.002)
R2 0.112 0.099 0.120 0.143 0.105 0.117 0.068
Num. Obs. 105531 18376 17108 16446 15638 15396 22567
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Table 11: Results of Test 3a - Stock Market Participants. Coefficients estimated using a standard

OLS model and ex-ante (e.g., before moving) values of the ratio of total risky stock holdings relative to wealth, θit/zit.

Standard errors are reported in parentheses.
∗∗∗

denotes significance at the 1% level, ∗∗ at the 5% level, and ∗ at the

10% level. mBIGit (mSMALLit) is a dummy variable equal to one if the family is increasing (decreasing) its housing

holdings, i.e., moving to a bigger (smaller) house. The pooled regressions include year dummies.

(a) PSID data

All 1984 1989 1994 1999 2001 2003 2005
constant (γ0) 0.146*** 0.158*** 0.147*** 0.136*** 0.240*** 0.215*** 0.176*** 0.179***

(0.010) (0.016) (0.015) (0.012) (0.020) (0.019) (0.024) (0.017)
Move big (γ1) 0.033** -0.046 0.066* 0.087*** -0.028 0.030 0.037 0.038

(0.011) (0.029) (0.028) (0.022) (0.031) (0.028) (0.033) (0.028)
Move small (γ2) 0.017 -0.003 0.007 -0.002 0.005 0.042 0.100 -0.012

(0.018) (0.062) (0.051) (0.035) (0.055) (0.042) (0.059) (0.041)
∆ Family 0.005 0.001 0.025 0.008 0.014 -0.001 -0.009 0.001

(0.005) (0.011) (0.013) (0.009) (0.015) (0.012) (0.015) (0.013)
∆ Retired 0.001 0.002 0.010 0.007 -0.025 -0.002 0.012 -0.036

(0.011) (0.031) (0.028) (0.019) (0.035) (0.031) (0.045) (0.039)
∆ Married -0.010 -0.043 -0.099 -0.059 -0.027 -0.031 0.056 0.102

(0.021) (0.059) (0.076) (0.041) (0.056) (0.067) (0.061) (0.052)
∆ Employment -0.010 -0.021 -0.007 -0.026* -0.005 0.015 0.011 0.067*

(0.008) (0.019) (0.018) (0.011) (0.031) (0.026) (0.035) (0.031)
Agey<30 -0.064*** -0.039 -0.042 -0.064*** -0.069 -0.062 -0.064 -0.105**

(0.010) (0.025) (0.023) (0.016) (0.037) (0.035) (0.038) (0.032)
Age30<y<50 -0.028*** -0.048** -0.047*** -0.013 -0.015 -0.040* -0.034 -0.030

(0.005) (0.015) (0.013) (0.009) (0.017) (0.016) (0.020) (0.015)
Midwest 0.025*** 0.040* 0.052** -0.011 0.014 0.044* 0.041 0.043*

(0.007) (0.018) (0.016) (0.013) (0.022) (0.022) (0.028) (0.022)
South 0.014* 0.012 0.061*** -0.041*** 0.025 0.026 0.060* 0.060**

(0.007) (0.019) (0.017) (0.012) (0.022) (0.022) (0.026) (0.021)
West 0.012 0.014 0.029 -0.008 0.020 0.022 0.013 0.016

(0.008) (0.020) (0.018) (0.014) (0.024) (0.024) (0.029) (0.022)
R2 0.418 0.456 0.497 0.222 0.551 0.519 0.383 0.535
Num. Obs. 6906 588 829 2370 794 829 773 723

(b) SIPP data

All 1997 1998 1999 2002 2003 2005
constant (γ0) 0.231*** 0.232*** 0.262*** 0.226*** 0.190*** 0.176*** 0.146***

(0.040) (0.011) (0.012) (0.009) (0.009) (0.008) (0.007)
Move big (γ1) 0.001 0.001 -0.010 0.021 -0.013 -0.025 0.037

(0.011) (0.032) (0.032) (0.024) (0.028) (0.022) (0.019)
Move small (γ2) -0.034 -0.051 -0.060 -0.032 0.005 -0.032 -0.022

(0.017) (0.044) (0.050) (0.040) (0.038) (0.037) (0.033)
∆ Family 0.005 0.004 0.022 -0.004 -0.013 0.014 0.003

(0.004) (0.010) (0.012) (0.010) (0.009) (0.009) (0.007)
∆ Retired 0.008 0.005 0.030 0.019 -0.009 -0.002 -0.002

(0.012) (0.029) (0.033) (0.028) (0.027) (0.026) (0.023)
∆ Married 0.010 -0.026 -0.035 0.067 -0.012 0.029 0.061*

(0.018) (0.048) (0.055) (0.051) (0.035) (0.044) (0.028)
∆ Employment -0.012 -0.020 -0.004 -0.001 -0.012 -0.016 -0.010

(0.007) (0.024) (0.026) (0.017) (0.013) (0.012) (0.010)
Agey<30 -0.015 0.013 -0.020 -0.021 -0.026 -0.008 -0.033*

(0.009) (0.023) (0.027) (0.019) (0.019) (0.017) (0.017)
Age30<y<50 -0.027*** -0.023* 0.006 -0.034*** -0.040*** -0.032*** -0.045***

(0.003) (0.009) (0.010) (0.007) (0.008) (0.007) (0.006)
Midwest 0.017*** 0.005 0.016 0.014 0.022* 0.022* 0.026**

(0.005) (0.013) (0.014) (0.010) (0.011) (0.010) (0.009)
South 0.033*** 0.022 0.042** 0.037*** 0.041*** 0.033*** 0.020*

(0.005) (0.013) (0.014) (0.010) (0.011) (0.009) (0.009)
West 0.006 0.019 0.008 0.012 -0.001 -0.015 0.012

(0.005) (0.014) (0.016) (0.011) (0.012) (0.010) (0.009)
R2 0.361 0.313 0.374 0.455 0.316 0.371 0.396
Num. Obs. 30089 5774 5406 5129 5210 4807 3763
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Table 12: Results of Test 3b. Coefficients estimated using a standard OLS model and ex-ante (e.g., before

moving) values of the risk-free securities holding relative to wealth, bit/zit. Standard errors are reported in paren-

theses.
∗∗∗

denotes significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. mBIGit (mSMALLit) is

a dummy variable equal to one if the family is increasing (decreasing) its housing holdings, i.e., moving to a bigger

(smaller) house. The pooled regressions include year dummies.

(a) PSID data

All 1984 1989 1994 1999 2001 2003 2005
constant (γ0) 0.163*** 0.210*** 0.161*** 0.158*** 0.230*** 0.238*** 0.202*** 0.214***

(0.009) (0.016) (0.021) (0.014) (0.015) (0.015) (0.022) (0.017)
Move big (γ1) 0.039*** 0.007 -0.008 0.030 0.009 0.021 0.060* 0.092***

(0.010) (0.027) (0.038) (0.026) (0.022) (0.021) (0.028) (0.022)
Move small (γ2) -0.006 -0.052 0.013 -0.004 -0.012 -0.002 -0.008 0.008

(0.016) (0.049) (0.070) (0.044) (0.034) (0.029) (0.050) (0.034)
∆ Family 0.001 0.008 -0.000 0.012 0.003 0.009 -0.005 -0.010

(0.004) (0.010) (0.014) (0.010) (0.007) (0.007) (0.011) (0.008)
∆ Retired -0.005 0.028 -0.065* -0.025 0.004 0.012 0.003 -0.020

(0.010) (0.024) (0.032) (0.023) (0.021) (0.020) (0.034) (0.024)
∆ Married -0.001 0.008 0.033 -0.030 0.018 -0.016 0.041 -0.036

(0.019) (0.052) (0.079) (0.051) (0.037) (0.040) (0.056) (0.044)
∆ Employment -0.036*** -0.028 -0.025 -0.027* -0.024 -0.025 -0.086*** -0.032

(0.007) (0.015) (0.020) (0.014) (0.017) (0.015) (0.024) (0.018)
Agey<30 0.015 0.018 0.038 0.038* -0.016 0.009 0.021 0.004

(0.009) (0.018) (0.026) (0.019) (0.021) (0.020) (0.029) (0.021)
Age30<y<50 -0.015** -0.036** 0.008 0.012 -0.009 -0.040*** -0.008 -0.022

(0.005) (0.013) (0.016) (0.011) (0.011) (0.011) (0.016) (0.013)
Midwest 0.010 -0.050** 0.058* 0.015 0.016 -0.015 0.041 0.005

(0.007) (0.018) (0.024) (0.015) (0.017) (0.017) (0.025) (0.019)
South -0.035*** -0.080*** -0.020 -0.008 -0.051** -0.045** -0.001 -0.042*

(0.007) (0.017) (0.022) (0.014) (0.015) (0.016) (0.023) (0.018)
West -0.016* -0.039 0.036 0.021 -0.049** -0.012 0.000 -0.051*

(0.008) (0.020) (0.026) (0.018) (0.018) (0.019) (0.027) (0.021)
R2 0.238 0.209 0.188 0.327 0.324 0.293 0.190 0.239
Num. Obs. 20345 2491 2584 2460 3130 3234 3228 3218

(b) SIPP data

All 1997 1998 1999 2002 2003 2005
constant (γ0) 0.146*** 0.177*** 0.155*** 0.209*** 0.209*** 0.204*** 0.215***

(0.032) (0.006) (0.007) (0.008) (0.008) (0.008) (0.007)
Move big (γ1) 0.034*** 0.012 0.049* 0.049* 0.030 0.038 0.027

(0.009) (0.021) (0.021) (0.025) (0.025) (0.024) (0.020)
Move small (γ2) -0.030* 0.000 -0.023 -0.059 -0.037 -0.050 -0.022

(0.013) (0.027) (0.029) (0.035) (0.032) (0.036) (0.029)
∆ Family 0.002 0.005 0.027*** 0.005 -0.006 -0.010 -0.006

(0.002) (0.005) (0.005) (0.008) (0.006) (0.008) (0.005)
∆ Retired 0.025** 0.003 0.014 0.130*** -0.016 -0.017 0.053**

(0.009) (0.016) (0.019) (0.026) (0.021) (0.027) (0.020)
∆ Married -0.004 -0.005 0.026 -0.024 -0.018 -0.015 -0.004

(0.012) (0.023) (0.026) (0.039) (0.028) (0.038) (0.024)
∆ Employment -0.017*** -0.015 0.001 -0.023 -0.023* -0.019 -0.017

(0.005) (0.012) (0.013) (0.015) (0.011) (0.012) (0.009)
Agey<30 -0.014** -0.031** -0.054*** -0.012 -0.014 0.041** -0.008

(0.005) (0.011) (0.012) (0.014) (0.014) (0.014) (0.011)
Age30<y<50 0.021*** 0.015** -0.033*** 0.013* 0.038*** 0.033*** 0.054***

(0.002) (0.005) (0.006) (0.007) (0.007) (0.007) (0.005)
Midwest 0.023*** 0.014 0.007 0.007 0.033*** 0.030** 0.046***

(0.004) (0.007) (0.008) (0.010) (0.010) (0.010) (0.008)
South -0.013*** -0.006 -0.003 -0.032*** -0.018* -0.012 -0.006

(0.003) (0.007) (0.008) (0.009) (0.009) (0.009) (0.008)
West -0.010* -0.004 0.008 -0.006 -0.025* -0.029** -0.006

(0.004) (0.008) (0.009) (0.010) (0.010) (0.010) (0.009)
R2 0.228 0.227 0.141 0.205 0.236 0.232 0.289
Num. Obs. 105531 18376 17108 16446 15638 15396 22567
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Table 13: Results of Test 3b with Mortgage. Coefficients estimated using a standard OLS model

and ex-ante (e.g., before moving) values of the ratio of total risk-free securities holdings relative to wealth, bit/zit.

Standard errors are reported in parentheses.
∗∗∗

denotes significance at the 1% level, ∗∗ at the 5% level, and ∗ at the

10% level. mBIGit (mSMALLit) is a dummy variable equal to one if the family is increasing (decreasing) its housing

holdings, i.e., moving to a bigger (smaller) house. The pooled regressions include year dummies.

(a) PSID data

All 1984 1989 1994 1999 2001 2003 2005
constant (γ0) 0.390*** 0.121 0.247* 0.025 0.065 -0.284* 0.007 -0.064

(0.061) (0.088) (0.100) (0.108) (0.129) (0.124) (0.125) (0.124)
Move big (γ1) -0.099 0.341* 0.076 0.134 0.351 -0.088 -0.426** -0.327*

(0.066) (0.146) (0.179) (0.201) (0.191) (0.172) (0.159) (0.160)
Move small (γ2) -0.293** 0.154 -0.376 -0.514 -0.203 -0.342 -0.467 -0.183

(0.105) (0.265) (0.331) (0.333) (0.294) (0.240) (0.285) (0.248)
∆ Family -0.075** 0.019 -0.116 -0.078 -0.171** -0.096 -0.059 0.054

(0.024) (0.052) (0.064) (0.079) (0.063) (0.059) (0.062) (0.061)
∆ Retired -0.008 0.099 0.101 -0.114 -0.014 -0.032 0.118 -0.173

(0.065) (0.130) (0.150) (0.178) (0.180) (0.164) (0.196) (0.180)
∆ Married -0.138 -0.388 0.072 -0.062 -0.195 -0.623 0.307 -0.012

(0.126) (0.279) (0.373) (0.388) (0.324) (0.324) (0.319) (0.322)
∆ Employment 0.031 0.040 -0.097 -0.005 -0.100 0.155 0.154 0.189

(0.046) (0.082) (0.095) (0.103) (0.144) (0.126) (0.138) (0.136)
Agey<30 -2.183*** -1.467*** -1.750*** -2.319*** -2.341*** -2.324*** -2.602*** -2.490***

(0.057) (0.097) (0.125) (0.145) (0.178) (0.165) (0.167) (0.155)
Age30<y<50 -0.973*** -0.656*** -0.932*** -1.059*** -1.208*** -0.917*** -1.023*** -0.980***

(0.034) (0.069) (0.076) (0.082) (0.096) (0.092) (0.093) (0.093)
Midwest -0.210*** -0.257** -0.176 -0.006 -0.162 -0.009 -0.443** -0.335*

(0.050) (0.097) (0.110) (0.117) (0.143) (0.139) (0.142) (0.142)
South -0.264*** -0.289** -0.337*** -0.148 -0.269* -0.057 -0.349** -0.371**

(0.047) (0.089) (0.101) (0.111) (0.134) (0.130) (0.132) (0.133)
West -0.357*** -0.190 -0.264* -0.092 -0.617*** -0.274 -0.543*** -0.358*

(0.055) (0.108) (0.124) (0.134) (0.157) (0.152) (0.153) (0.152)
R2 0.215 0.204 0.196 0.251 0.206 0.204 0.237 0.232
Num. Obs. 20345 2491 2584 2460 3130 3234 3228 3218

(b) SIPP data

All 1997 1998 1999 2002 2003 2005
constant (γ0) -0.165 0.055 0.009 0.003 0.048 0.059 0.077*

(0.172) (0.038) (0.044) (0.042) (0.042) (0.043) (0.033)
Move big (γ1) 0.123* 0.233 0.116 0.497*** -0.015 -0.275* 0.169

(0.050) (0.126) (0.132) (0.128) (0.132) (0.126) (0.094)
Move small (γ2) -0.031 0.065 -0.040 -0.021 -0.266 -0.016 0.048

(0.069) (0.163) (0.187) (0.182) (0.168) (0.188) (0.138)
∆ Family -0.032* -0.053 -0.092** -0.021 0.005 -0.017 -0.013

(0.013) (0.030) (0.034) (0.039) (0.033) (0.040) (0.023)
∆ Retired -0.003 -0.087 0.145 -0.121 -0.121 0.151 0.035

(0.046) (0.100) (0.121) (0.135) (0.111) (0.139) (0.094)
∆ Married -0.125* -0.121 -0.199 -0.374 -0.121 -0.053 -0.013

(0.063) (0.143) (0.168) (0.204) (0.145) (0.199) (0.112)
∆ Employment -0.147*** -0.301*** -0.318*** -0.164* 0.005 -0.112 -0.158***

(0.026) (0.076) (0.084) (0.081) (0.056) (0.062) (0.043)
Agey<30 -2.370*** -2.447*** -2.572*** -2.647*** -2.120*** -2.387*** -2.145***

(0.028) (0.066) (0.078) (0.075) (0.070) (0.073) (0.054)
Age30<y<50 -0.915*** -1.000*** -1.130*** -0.924*** -0.805*** -0.877*** -0.777***

(0.013) (0.032) (0.036) (0.034) (0.035) (0.035) (0.026)
Midwest -0.092*** -0.006 -0.011 -0.000 -0.117* -0.176*** -0.224***

(0.019) (0.045) (0.052) (0.050) (0.050) (0.051) (0.039)
South -0.224*** -0.221*** -0.257*** -0.249*** -0.196*** -0.202*** -0.228***

(0.018) (0.043) (0.049) (0.047) (0.047) (0.048) (0.037)
West -0.365*** -0.395*** -0.376*** -0.317*** -0.401*** -0.337*** -0.375***

(0.021) (0.050) (0.057) (0.054) (0.054) (0.055) (0.042)
R2 0.172 0.187 0.190 0.175 0.145 0.164 0.170
Num. Obs. 105531 18376 17108 16446 15638 15396 22567
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Table 14: Predictability of excess returns and dividends growth with rents-to-price ratios, 1-lags
Newey-West corrected standard errors. Data source: rents data correspond to housing services
expenditures (NIPA from BLS) and housing values from the Flow of Funds. Sample from 1960 to
1998.

Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

Housing

k=1 1.48 4.85 0.40 0.08 0.41 0.01
k=4 10.82 5.99 0.54 -0.61 -1.22 0.04
k=5 16.01 5.28 0.50 -1.06 -1.54 0.08

Stocks

k=1 2.83 1.20 0.03 -3.33 -1.96 0.05
k=4 7.75 1.15 0.04 -2.38 -1.42 0.02
k=5 11.37 1.41 0.05 -4.41 -2.36 0.04
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Table 15: Panel A. Predictability of excess returns and dividends growth with rents-to-price ratios,
1-lags Newey-West corrected standard errors. Data source: price-rent data from Morris Davis
website from 1978 to 2007. Panel B. Same regressions with rents data from NIPA and values data
from Flow of Funds from 1960 to 2007.

Panel A

Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

USA

k=1 -3.37 -1.82 0.16 0.40 0.53 0.01
k=4 -19.59 -1.54 0.14 2.49 0.80 0.02
k=5 -21.94 -0.98 0.08 1.29 0.34 0.00

Midwest

k=1 -1.76 -1.38 0.06 0.89 1.41 0.07
k=4 -3.97 -0.46 0.01 3.49 1.50 0.12
k=5 -2.54 -0.20 0.00 3.28 1.25 0.08

Northeast

k=1 -1.36 -0.83 0.03 -0.84 -1.19 0.08
k=4 8.04 0.77 0.04 1.82 0.66 0.04
k=5 18.85 1.45 0.14 4.21 1.30 0.14

South

k=1 -3.61 -2.29 0.16 -0.36 -0.42 0.01
k=4 -3.99 -0.22 0.01 -1.86 -0.65 0.02
k=5 6.80 0.30 0.01 -3.32 -0.89 0.04

West

k=1 -4.54 -2.18 0.29 0.13 0.18 0.00
k=4 -22.27 -1.43 0.17 -3.81 -1.14 0.05
k=5 -21.63 -0.98 0.09 -8.23 -2.18 0.16

Stocks

k=1 3.92 2.65 0.08 -3.24 -2.07 0.05
k=4 17.71 3.77 0.27 -0.01 -0.84 0.00
k=5 20.39 4.31 0.28 0.00 0.04 0.00

Panel A

Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

Housing

k=1 1.40 3.68 0.36 0.08 0.72 0.01
k=4 11.91 8.24 0.62 -0.63 -1.60 0.06
k=5 19.17 9.01 0.68 -0.92 -1.98 0.09

Stocks

k=1 2.58 1.50 0.03 -3.04 -2.35 0.05
k=4 7.17 1.54 0.05 -3.85 -2.07 0.07
k=5 11.64 2.37 0.08 -5.33 -2.81 0.08
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Table 16: Predictability of excess returns and dividends growth with rents-to-price ratios, 1-lags
Newey-West corrected standard errors. Data source: price-rent data from Morris Davis website
from 1978 to 2000.

Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

Chicago
k=1 1.21 0.53 0.01 3.22 2.94 0.29
k=5 32.02 3.83 0.44 10.42 3.65 0.48

Cincinnati
k=1 0.42 0.15 0.00 2.14 1.93 0.20
k=5 36.42 5.44 0.58 6.79 2.72 0.24

Cleveland
k=1 1.13 0.58 0.01 1.80 1.33 0.11
k=5 24.61 2.33 0.32 3.25 0.81 0.07

Detroit
k=1 -1.31 -0.79 0.04 0.46 0.59 0.04
k=5 14.77 1.62 0.19 3.88 1.71 0.18

Kansas City
k=1 3.28 1.83 0.19 0.89 0.67 0.03
k=5 23.19 7.64 0.63 -5.99 -1.56 0.14

Milwaukee
k=1 2.70 1.24 0.09 2.60 2.72 0.36
k=5 29.84 5.08 0.62 1.68 0.61 0.03

Minneapolis
k=1 -1.33 -0.49 0.02 -0.89 -0.72 0.04
k=5 15.14 2.24 0.25 -9.28 -2.74 0.35

St. Louis
k=1 0.15 0.06 0.00 1.62 1.40 0.08
k=5 29.80 6.39 0.58 2.28 0.37 0.01

Boston
k=1 1.79 0.81 0.03 -1.12 -1.06 0.08
k=5 36.92 3.22 0.56 6.98 2.13 0.29

New York
k=1 1.57 0.71 0.03 -1.59 -2.19 0.28
k=5 25.92 2.21 0.37 0.32 0.11 0.00

Philadelphia
k=1 0.82 0.45 0.01 1.37 0.88 0.06
k=5 29.03 2.83 0.43 12.01 3.24 0.48

Pittsburgh
k=1 1.10 0.66 0.01 2.07 1.61 0.15
k=5 19.96 2.56 0.34 1.08 0.31 0.01

Atlanta
k=1 0.47 0.14 0.00 1.41 0.45 0.01
k=5 25.52 2.11 0.21 -22.48 -1.78 0.15

Dallas
k=1 1.60 1.21 0.05 0.36 0.39 0.01
k=5 18.10 3.05 0.39 3.05 0.60 0.03

Houston
k=1 2.86 2.02 0.17 1.43 1.18 0.08
k=5 25.03 6.83 0.68 8.09 3.85 0.37

Miami
k=1 -5.51 -2.32 0.17 -2.92 -1.90 0.17
k=5 -0.74 -0.06 0.00 -8.17 -3.10 0.34

Denver
k=1 -5.55 -2.84 0.27 -4.85 -3.60 0.51
k=5 3.12 0.24 0.00 -17.41 -3.30 0.38

Honolulu
k=1 -0.09 -0.04 0.00 0.32 0.36 0.01
k=5 17.45 1.17 0.13 6.26 2.15 0.24

Los Angeles
k=1 1.84 0.59 0.01 3.43 3.29 0.35
k=5 55.12 5.88 0.78 15.10 3.90 0.38

Portland
k=1 -0.84 -0.74 0.02 -0.19 -0.37 0.01
k=5 12.83 1.25 0.09 3.11 1.11 0.11

San Diego
k=1 2.15 1.08 0.03 4.00 2.68 0.31
k=5 43.18 10.98 0.86 5.30 0.78 0.04

San Francisco
k=1 1.11 0.38 0.01 2.21 1.97 0.16
k=5 42.02 5.63 0.67 9.06 2.52 0.25

Seattle
k=1 -2.25 -2.18 0.08 -1.22 -1.79 0.13
k=5 6.27 0.81 0.04 -0.97 -0.66 0.02
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Table 17: Parameter values for the housing prices process in a 3-regime model. Estimation

of the parameters corresponding to the housing price processes using a discrete Markov regime (Wonham filter) with

3-regimes. Data is semiannual from 1975 to 2007. All parameters are reported in annual basis.

West Northeast South Midwest
(1975-2007) (1975-2007) (1975-2007) (1975-2007)

µh 0.1605 0.1518 0.1094 0.0967
µm 0.0863 0.0928 0.0590 0.0476

µl 0.0306 0.0180 0.0286 0.0388
σP 0.0108 0.0157 0.0082 0.0116

λh→m 0.0000 0.0000 0.2402 0.0000

λh→l 0.1917 0.3017 0.0000 0.1045

λm→h 0.0995 0.1749 0.1066 0.0000

λm→l 0.1557 0.0000 0.1201 0.3261

λl→m 0.0682 0.0844 0.0642 0.1056

λl→h 0.0000 0.0307 0.0000 0.0000

Table 18: Model results for the four U.S. Census Macro Regions. 3-regime model.
Columns (1), (2) and (3) display the lower bound, the optimal return point and the upper bound, respectively. The

optimal return point represents the wealth-to-housing ratio immediately after a housing purchase. Column (4) is

the the optimal housing-to-wealth ratio without transaction costs and Column (5) is the corresponding ratio with

transaction costs immediately after a housing purchase. Column (6) is the relative risk aversion just after housing

purchase, and Column (7) is the average holding of the risky asset, estimated just after a housing purchase. Column

(8) is the long run average of the optimal wealth-to-housing ratio immediately after a housing purchase.

Regime (1) (2) (3) (4) (5) (6) (7) (8)

i zi z∗i zi αih 1/z∗i RRA(z∗i ) E(θ̂∗(zt,i)/zt)
E(τi)

E(z∗i )

E(τi)

West High 0.125 0.239 0.519 6.615 4.173 3.683 0.175 0.334
Medium 0.228 0.488 1.137 2.888 2.133 2.553 0.677 0.599

Low 0.807 2.022 3.447 0.933 0.497 2.150 1.009 2.024

Northeast High 0.155 0.269 0.538 6.186 3.716 3.549 0.276 0.350
Medium 0.228 0.478 1.017 3.311 2.087 2.536 0.702 0.540

Low 0.949 2.450 4.439 0.861 0.408 2.103 1.052 2.529

South High 0.180 0.375 0.757 3.926 2.663 2.792 0.592 0.592
Medium 0.416 0.702 1.948 1.620 1.422 2.391 0.803 0.903

Low 0.889 2.016 3.776 0.777 0.495 2.089 1.021 2.058

Midwest High 0.220 0.414 0.888 3.233 2.413 2.958 0.615 0.521
Medium 0.676 1.634 2.439 1.077 0.611 2.313 0.957 1.736

Low 0.877 1.933 3.686 0.844 0.517 2.137 0.994 1.888
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