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Introduction

The past three decades of empirical asset pricing literature suggests that patterns in returns,

left unexplained by the Sharpe–Lintner CAPM, are pervasive throughout the cross section.

In addition to anomalies related to size and book-to-market (e.g., Fama and French (1992))

and momentum (Jegadeesh and Titman (1993)), recent empirical works document further

counterintuitive relations. Specifically, Diether, Malloy, and Scherbina (2002) demonstrate

that firms with more uncertain earnings (higher forecast dispersion) underperform lower

dispersion firms. Ang, Hodrick, Xing, and Zhang (2006) document a negative relation

between average return and idiosyncratic volatility (IV). Dichev (1998) and Campbell,

Hilscher, and Szilagyi (2008) find evidence that financially distressed stocks deliver abnor-

mally low returns, and Avramov, Chordia, Jostova, and Philipov (2009a) show that high

credit rating firms considerably outperform their lower-rated counterparts. These three

effects are anomalous because, while investors may be expected to discount uncertainty

about firm fundamentals (e.g., Merton (1987)), they appear to pay a premium for bearing

such uncertainty. Past work offers potential explanations for the puzzling effects. Johnson

(2004) interprets forecast dispersion as a proxy for unpriced information risk, and shows

that in the presence of leverage, equity value rises (and expected return falls) as unpriced

risk increases. Garlappi, Shu, and Yan (2008) and Garlappi and Yan (2011) attribute the

distress risk effect to shareholders’ ability to extract rents through strategic renegotiation

of debt obligations, while Johnson, Chebonenko, Cunha, D’Almeida, and Spencer (2011)

propose that the endogenous choice of leverage coupled with heterogeneity in business risk

explains the distress risk effect.

This paper proposes a unified resolution of these puzzling return patterns within a long-

run risk equilibrium. Two ingredients pertaining to the dynamics of aggregate and firm

fundamentals underly our model. The aggregate economy is formulated based on Bansal
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and Yaron (2004) in that long-run risk arises through the interaction of the stochastic

differential utility of Duffie and Epstein (1992) with persistent consumption and dividend

growth rates. In the cross section, we employ a tractable mean-reverting process to for-

mulate firm dividend share, which is the fraction of the dividend paid by the firm relative

to aggregate dividend. Firm dividend growth depends on the long-run share ratio, which

is the long-run expected dividend share of a firm as a proportion of its current dividend

share.1 This framework allows us to solve for cross-sectional asset pricing quantities while

ensuring that the cross section of firms aggregates to form the economy. Ultimately, we

successfully merge the long-run risk literature with the shares-based cross section literature

advocated by Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006, 2010).

Moreover, we develop an intertemporal asset pricing model in the spirit of Merton (1973),

as a firm’s expected return is affected by its beta with respect to an economic growth hedge

portfolio.

In a long-run risk economy, the cross section of expected returns is determined by firms’

cash flow duration. Long-run cash flows have pronounced sensitivities to the persistent

economic growth rate and thus command large risk premiums. Therefore, high duration

firms have high expected returns due to their reliance on long-run cash flows. The duration

of a firm is positively related to its share ratio, which determines expected dividend growth.

We demonstrate that the long-run risk model has both cash flow- and return-based

implications. Expected returns are positively related to share ratio as well as economic

growth betas. Empirically, we find support for both predictions. Average returns are

significantly positively related to the cash flow-based share ratio measure and the return-

based economic growth beta measure.2 Furthermore, there is some evidence that the model

1Share ratio is similar to the relative share characteristic of Menzly, Santos, and Veronesi (2004).
2Our return-based results are complementary to those of Ferson, Nallareddy, and Xie (2011), who

examine the out-of-sample performance of the long-run risk model for a smaller set of anomaly-based and
bond portfolios.
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can help explain the book-to-market, size, and momentum anomalies, as the cash flows of

these portfolios are consistent with a long-run risk explanation.3 However, economic growth

betas do not appear to fully explain these anomalies in the return-based tests.

We then explore an interesting feature of our model – the negative cross-sectional re-

lation between exposures to systematic and firm-specific risks – as a potential explanation

for the dispersion, IV, and distress risk effects. In the model, low share ratio firms exhibit

low duration as they derive their values primarily from short-run cash flows. Whereas

such firms display low expected returns, they have high sensitivities to firm-specific shocks

leading to high dispersion, IV, and credit risk. In contrast, high share ratio firms display

high duration and are particularly sensitive to aggregate shocks but comparatively less

susceptible to firm-specific dividend shocks.

The empirical evidence broadly supports our model predictions. Dispersion, IV, and

credit risk are closely related in the cross section, exhibiting high cross-sectional correlation.

More importantly, we find empirical support for a long-run risk explanation of these effects,

as portfolios of high (low) dispersion, IV, and credit risk firms have low (high) estimated

share ratio as predicted by our model. Furthermore, introducing the economic growth

factor drives out the ability of these characteristics to forecast returns in the cross section.

Overall, the evidence suggests that long-run risk can explain the dispersion, IV, and distress

risk effects.

Finally, we offer a potential explanation for the disagreement in the literature regarding

the IV effect. Depending on the specification, researchers have demonstrated a positive

(e.g., Fu (2009)), negative (e.g., Ang, Hodrick, Xing, and Zhang (2006)), or non-existent

(e.g., Bali and Cakici (2008)) relation between IV and average returns. In our model,

IV is decreasing in both dividend share and share ratio. While the true negative IV–

3See also Bansal, Dittmar, and Lundblad (2005) who show a similar result using cash flow betas to
measure aggregate consumption risk.
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return relation is exclusively determined by share ratio, sorting firms by dividend share

appears to produce a positive IV–return relation. We find that Ang, Hodrick, Xing, and

Zhang’s (2006) measure is closely related to share ratio, explaining its negative relation

with returns. However, alternative measures and sorting procedures can result in portfolios

which primarily reflect dividend share’s effect on IV, producing an apparently flat or positive

IV–return relation in the cross section.

In sum, recent work utilizes the long-run risk framework to offer explanations for ag-

gregate and cross-sectional asset pricing puzzles including the equity premium, risk-free

rate, and excess volatility puzzles (Bansal and Yaron (2004)), as well as the value premium

(e.g., Hansen, Heaton, and Li (2008) and Ai and Kiku (2011)) and the momentum effect

(Avramov and Hore (2008)). We enhance the long-run risk literature in both methodol-

ogy and substantive findings. In particular, we derive formal cross-sectional asset pricing

restrictions and are able to express our model through an intuitive ICAPM relationship.

Moreover, our model simultaneously resolves three apparently counterintuitive regularities

– the dispersion, IV, and credit risk effects.

The remainder of the paper is organized as follows. In Section 1, we introduce the

aggregate economy, develop our formulation of the cross section of firms, and establish

asset pricing results. We then test the primary cross-sectional predictions of the model in

Section 2. In Section 3, we examine the dispersion, IV, and credit risk effects within our

framework and provide empirical evidence. Section 4 concludes.

1 The Model

Two essential ingredients pertaining to the dynamics of aggregate and firm fundamentals

underly our equilibrium setup. The aggregate economy is based on a simple version of

Bansal and Yaron’s (2004) long-run risk framework in which an economic agent with re-
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cursive preferences is exposed to persistent consumption and dividend growth rates. This

economy generates an equity premium, market volatility, and a risk-free rate that match the

data. Within the aggregate economy, we formulate a cross section of firms whose dividends

sum to the aggregate dividend. Firms are differentiated by expected cash flow timing. In

a long-run risk equilibrium, investors require larger risk premiums to hold firms weighted

toward long-run cash flows.

1.1 The Aggregate Economy

The representative investor is endowed with the stochastic differential utility of Duffie and

Epstein (1992), a continuous-time equivalent to Epstein–Zin (1989) preferences, with

Jt = Et

[∫ ∞

t

f(Cs, Js)ds

]
, (1)

where Jt is the value function and f(Cs, Js) is a normalized aggregator of current consump-

tion and continuation utility. Assuming that the elasticity of intertemporal substitution

(EIS) equals one, the normalized aggregator takes the form

f(C, J) = β(1− γ)J

[
logC − log((1− γ)J)

1− γ

]
, (2)

where γ is the coefficient of relative risk aversion and β is the time preference parameter.4

4Empirically, there is a wide debate about the value of EIS. See Bansal, Kiku, and Yaron (2010) and
Beeler and Campbell (2011) for discussion and estimation of EIS in the context of the long-run risk model.
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Next, we formulate aggregate consumption and dividend growth rates as5

dCt
Ct

= (µC + λXt)dt+ σCdWC , (3)

dDt

Dt

= (µD +Xt)dt+ σDdWD, (4)

where Xt follows the mean-reverting dynamics

dXt = −κXtdt+ σXdWX . (5)

The time-varying component of economic growth, Xt, reverts to zero, with the speed of

reversion governed by κ. Shocks to Xt propagate through several periods of consumption

and dividend growth rates due to slow mean reversion, which combined with recursive

preferences gives rise to long-run risk. Since expected consumption growth is less volatile

than expected dividend growth we allow for a differential effect of Xt on consumption and

dividend growth rates, with λ controlling the relative strength of shocks. In the data we

find λ < 1 and we impose this restriction in our analysis. Thus consumption growth is

smoother than dividend growth, capturing the insight of Abel’s (1999) levered economy.

Following Bansal and Yaron (2004), we assume the processes dWC , dWD, and dWX are

uncorrelated for simplicity of presentation.6

We present asset pricing quantities for the aggregate setup in the proposition below and

refer the interested reader to Hore (2010) for complete derivation and Appendix A.1 for

5Consumption and dividend growth are the continuous-time versions of the discrete-time processes em-
ployed by Bansal and Yaron (2004). We adopt a model with homoskedastic shocks to dividend growth, con-
sumption growth, and the aggregate growth rate. Bansal and Yaron (2004) investigate both homoskedastic
and heteroskedastic cases. The homoskedastic model is simpler and sufficient for our purposes.

6Introducing correlation between the consumption and dividend processes leads to an additional term
in expected returns taking the form ρσCσDγ, which is the familiar expected return in an i.i.d. growth
economy with CRRA preferences. This term is economically small for reasonable values of risk aversion
(e.g. Mehra and Prescott (1985)). We assume zero correlation to simplify the model and focus on the
effects of long-run risk.
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additional details.7

Proposition 1. The price-dividend ratio is

Pt
Dt

= G(Xt) =

∫ ∞

t

S(Xt, τ)ds [τ = s− t], (6)

where the S(Xt, τ) function is described in Appendix A.1. The risk premium is

µt =
λ(γ − 1)

κ+ β
σ2
X

GX

G
. (7)

The essential feature of our aggregate economy is the term structure of risk premiums,

which is formulated in the following theorem.

Theorem 1. Expected return is increasing in duration for any asset that pays a non-

negative portion of the aggregate dividend at all times.

Proof. See Appendix A.1.

Theorem 1 establishes that longer-run cash flows are riskier, thus commanding higher

risk premiums. Figure 1 exhibits the representative investor’s required discount rate on cash

flows as a function of duration. Risk premiums on low duration cash flows are negligible

while high duration cash flows command large risk premiums.

Why do agents require higher risk premiums on longer-run cash flows? Investors en-

dowed with Duffie–Epstein preferences prefer early resolution of uncertainty if γ > 1 with

unit EIS (ψ = 1), or if γ > 1
ψ
when ψ is unrestricted. Even with persistent consumption

and dividend growth dynamics, shocks to growth rates have little effect on short-run cash

flows. Short-run cash flows are thus relatively safe. On the other hand, the effect of these

7We impose the following parameter restrictions: γ > 1, λ < 1, β > 0, σX > 0, and κ > 0.
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shocks builds over time and heightens uncertainty about the magnitudes of long-run div-

idends and consumption. Much of this uncertainty remains unresolved for a long period.

Thus, investors heavily discount long-run cash flows giving rise to a long-run risk premium.

1.2 The Cross Section of Firms

We consider a cross section of N firms that aggregates to the economy derived above.

Explicitly modeling the cross section ensures the reasonable long-term evolution of firm

cash flows, which is particularly important in a long-run risk framework. Our tractable

framework facilitates drawing cross-sectional inferences by pricing a single firm.

In the cross section, firm i contributes a time-varying portion of the aggregate dividend,

defined as the firm’s dividend share θit. Thus, if the aggregate dividend is Dt, firm i

contributes Di
t = θitDt, whereas the remaining firms contribute a total of (1 − θit)Dt. The

dividend share is formulated using the mean-reverting Wright–Fisher (WF) process8

dθit = α(θ̄i − θit)dt+ δ
√
(1− θit)θ

i
tdWθi . (8)

Moreover, we parameterize long-run dividend shares such that
∑N

i=1 θ̄
i = 1 and assume the

covariance structure of the (N × 1) vector dWθ satisfies

ρt(dWθi , dWθj) = −

√
θitθ

j
t

(1− θit)(1− θjt )
for all i, j. (9)

The negative correlation between dividend share shocks naturally arises from the aggrega-

tion identity
∑N

i=1D
i
t = Dt. Essentially, as one firm’s dividend share increases through a

firm-specific shock, dividend shares of all other firms are “crowded out” to maintain proper

8A WF process for dividend share arises endogenously in an endowment economy with two trees, as
shown by Cochrane, Longstaff, and Santa-Clara (2008). WF processes originate in genetics literature by
Fisher (1930) and Wright (1931). See Crow and Kimura (1970) for examples and further discussion of WF
processes. We impose the parameter restrictions α > 0 and δ > 0.
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aggregation. In a typical economy, dividend shares of all firms are small so ρt(dWθi , dWθj)

is negligible (e.g. correlation of −0.01 between firms each paying 1% of the aggregate

dividend).

Several features of the dividend share process are desirable. First, the dividend share of

all firms is bounded between zero and one.9 Second, as we formally show below,
∑N

i=1 θ
i
t = 1

for all t, so the cross section of firms does aggregate to form the economy described above.

Third, firm dividend shares revert towards their long-run means. Indeed, mean reversion in

dividend (or consumption) share is a common assumption in the shares-based literature (e.g.

Menzly, Santos, and Veronesi (2004), Santos and Veronesi (2006, 2010), and Da (2009)).

Da (2009) finds empirical support for a similar mean-reverting cash flow share process for

book-to-market, size, and reversal portfolios. Also common are the assumptions of mean

reversion in expected dividend growth (e.g. Campbell and Shiller (1988)) as well as long-

run convergence to an economy-wide steady state dividend growth (e.g. Pástor, Sinha, and

Swaminathan (2008) and Da and Warachka (2009)). Mean reversion ensures that no firm

eventually dominates the economy, and it captures the intuitive notion that expectations of

future dividends are revised less than current dividends after a shock to the firm’s dividend.

We refer to θ̄i

θit
as the long-run share ratio of the firm. The share ratio is the long-run

expected dividend share of the firm as a proportion of its current dividend share. Several

of our model implications depend on dividend share θit through the share ratio. To briefly

illustrate the dividend share and share ratio characteristics, suppose that a firm is currently

paying 1% of the total market dividend but is expected to exhibit high dividend growth so

that it eventually pays 5% of the market dividend. The dividend share of this firm is 0.01

and the long-run share ratio is 5
(
5%
1%

)
. Consider another firm that is currently paying 1%

9Assuming that the initial dividend share of firm i is between zero and one, i.e. θi0 ∈ (0, 1), then the
boundary points zero and one are unattainable within finite time if 2αθ̄i > δ2 (see Karlin and Taylor
(1981), pp 239–241). If the restriction 2αθ̄i > δ2 is violated, we propose a reflecting barrier at each of the
boundaries to maintain proper aggregation.
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of the market dividend but is expected to eventually pay only 0.2% of the market dividend.

This firm has a dividend share of 0.01 and a share ratio of 0.2
(
0.2%
1%

)
.

We now turn to demonstrating how dividend shares and share ratios aggregate at the

portfolio level. Theorem 2 provides a convenient aggregation result where the sum of any

two dividend shares also follows a WF process.

Theorem 2. Assume that the dividend share of each firm i = 1, ..., N follows a WF process,

as in equation ( 8), with the correlation structure described in equation ( 9). Then the

dividend share of a portfolio of any two firms i and j follows a WF process,

dθpt = α(θ̄p − θpt )dt+ δ
√
(1− θpt )θ

p
t dWθp , (10)

where θ̄p = θ̄i + θ̄j and θpt = θit + θjt .

Proof. See Appendix A.2.

Theorem 2 leads to proper aggregation of the cross section. Since the sum of any two

WF processes also follows a WF process, it is trivial to show that the dividend shares of

the N firms in the economy sum to one. Hence, firm dividends also sum to the aggregate

dividend. Further, our model’s implications for firm-level asset pricing carry over to the

portfolio level. A value-weighted portfolio’s share ratio, which determines exposure to

long-run risk, is the dividend-weighted average of firm share ratios,

θ̄p

θpt
=
∑
i∈P

Di
t∑

i∈P D
i
t

θ̄i

θit
, (11)

where P is the set of firms held in the portfolio. See Appendix A.2 for additional details

on aggregation.

We assume throughout that Cov
(
dθit,

dCt

Ct

)
= Cov (dθit, dXt) = 0, so the dividend share

does not covary with the pricing kernel. Hence, no asset in this economy hedges against
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transient consumption shocks from dWC . Even then, as we show below, firm share ratios

interact with the persistent component of consumption growth to play a powerful role in

determining time-varying exposures to systematic risk for each firm.

Next, firm dividend growth, obtained by applying Itô’s Lemma to Di
t = θitDt, is given

by

dDi
t

Di
t

=

(
α

(
θ̄i

θit
− 1

)
+ µD +Xt

)
dt+ δ

√
1− θit
θit

dW i
θ + σDdWD. (12)

Firm-level dividend growth absorbs the expected aggregate dividend growth drift compo-

nent µD + Xt as well as the aggregate dividend shock σDdWD. The firm share ratio also

affects firm dividend growth. To illustrate, if θ̄i > θit, then the dividend share is likely

to increase towards θ̄i. In this case, θ̄i

θit
> 1 and expected dividend growth is higher than

aggregate dividend growth. On the other hand, if θ̄i < θit, the dividend share is expected

to decrease, leading to low expected dividend growth relative to the aggregate dividend.

Finally, if θ̄i = θit then the expected dividend growth rate is equal to the expected aggregate

dividend growth rate. Still, firm dividend growth is more volatile due to the firm-specific

shock dW i
θ .

1.3 Cross-Sectional Asset Pricing

The cross section of returns is driven by the interaction between two properties of the

economy: (i) long-run cash flows carry a higher risk premium than short-run cash flows

and (ii) firms have different expected cash flow timing, reflected by the long-run share ratio

characteristic. Firms with dividends that are concentrated in the short run primarily derive

their value from relatively safe cash flows, while firms with primarily long-run dividends

are risky investments. Share ratio is positively related to expected dividend growth and

cash flow duration. Hence, share ratio is positively related to systematic risk exposure and

expected return.
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Below, we formalize asset pricing properties at the firm level.

Theorem 3. The firm price-dividend ratio is

P i
t

Di
t

≡ Gi(Xt, θ
i
t; θ̄

i, α) =

∫ ∞

t

S(Xt, τ)Et[θ
i
s]ds [τ = s− t]

=
Pt
Dt

+

(
θ̄i

θit
− 1

)∫ ∞

t

S(Xt, τ)
(
1− e−ατ

)
ds, (13)

where S(Xt, τ) is defined in Proposition 1.10 The firm price-dividend ratio is increasing in

share ratio θ̄i

θit
. Next, the firm-level risk premium is

µit =
λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi
, (14)

and µit is increasing in share ratio. Finally, the firm-level instantaneous variance is

σ2
i,t = σ2

D +

(
Gi
X

Gi

)2

σ2
X +

(
1 +

θitG
i
θ

Gi

)2

δ2
1− θit
θit

. (15)

Proof. See Appendix A.3.

The firm price-dividend ratio is affected by aggregate and firm-specific conditions. In

particular, all firms are affected by expected economic growth, and all price-dividend ratios

increase when Xt increases. If θit = θ̄i (i.e. the dividend share is at its long-run mean),

then the firm price-dividend ratio equals that of the market. If θ̄i

θit
> 1 ( θ̄

i

θit
< 1), then

firm expected dividend growth is higher (lower) than aggregate expected dividend growth,

which pushes the firm price-dividend ratio higher (lower) than the aggregate price-dividend

ratio. However, high share ratio also implies that firm dividends are weighted towards the

long-run and agents exposed to long-run risk discount these cash flows more heavily. Still,

the higher discount rate for these cash flows is not sufficient to offset the increase in the

10Integrability of (13) is trivially satisfied due to the transversality condition of S(Xt, τ) with α > 0.

12



price-dividend ratio stemming from the higher expected dividend growth.

Finally, observe from equation (15) that firm return variance has both systematic and

idiosyncratic components. Shocks to the aggregate dividend and growth rate are market-

wide risks to which all firms are exposed. The systematic portion of firm return volatility

varies in the cross section only to the extent that firms have differential exposures to

systematic risk through
Gi

X

Gi . On the other hand, the
(
1 +

θtGi
θ

Gi

)2
δ2

1−θit
θit

component arises

solely from firm-specific shocks to dividend share. Later, we discuss properties of IV as well

as describe the cross-sectional relation between expected return and IV.

1.3.1 A Parsimonious Beta Pricing Model

Comparing the aggregate and firm risk premiums in equations (7) and (14), respectively,

we are able to formulate a conditional single-factor model. The firm expected return is

related to an economic growth hedge portfolio through the beta pricing relation

µit = βiX,tµX,t, (16)

where

βiX,t

(
Xt,

θ̄i

θit

)
=
Gi
X

Gi

G

GX

(17)

is the (time-varying) firm beta with respect to the hedging portfolio. Here, the hedging

portfolio is constructed to be exposed solely to economic growth shocks through dWX and

to have expected return µX,t = µt. Additional information about the hedging portfolio is

available in Appendix A.3.

It follows from Theorem 3 that beta is positively related to share ratio, as is illustrated

in Figure 2. In fact, beta and duration are closely linked in the cross section. Long-run

cash flows are more sensitive to growth rate shocks, leading to higher exposures to hedging

portfolio returns for high duration firms. Therefore, firms with higher (lower) than average
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duration have betas greater (less) than one. There is an economically significant spread in

expected returns in the cross section between high and low share ratio firms arising from

these differential exposures to long-run risk.

As previously noted, we concentrate on a version of the model with uncorrelated con-

sumption and dividend growth shocks. In the presence of non-zero correlation, we can

derive an intertemporal asset pricing model in the spirit of Merton (1973), as expected

return can be written

µit = βiM,tµM,t + βiX,tµX,t, (18)

where βiM,t and µM,t are the firm beta and expected return for the market portfolio paying

the aggregate dividend and βiX,t =
(
Gi

X

Gi
G
GX

− 1
)
. Market returns are exposed to both

short-run and long-run consumption shocks, so the two factors are positively correlated.

To the extent that firms have differing exposures to economic growth shocks, however, the

cross-sectional implications of the long-run risk model and CAPM will differ. In Section

2.3, we test this model and generally find support for its predictions.

1.3.2 Asset Pricing with Leverage

While the dispersion and IV effects can be analyzed whether or not firms employ leverage,

the credit risk effect is exclusively studied in the context of leverage. We adopt a simple

specification for firm debt from Merton (1974). In this framework, a firm takes on zero-

coupon debt with a face value of B payable at time T . The firm defaults if its value

at time T falls below the face value of debt. If the firm does default, all its value is

distributed to debtholders. Otherwise, shareholders receive the residual firm value, the

value remaining after the principal payment to debtholders. Despite its simplicity, Merton’s

(1974) framework achieves empirical success in forecasting firm defaults. Duffie, Saita, and
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Wang (2007) establish that distance to default, a key determinant of credit risk in the

Merton model, is an important predictor of bankruptcies and defaults.

To formalize, the value of levered equity is given by

V i
t = Et

∫ T

t

Λs
Λt
Di
sds+ Et

[
ΛT
Λt

max (P i
T −B, 0)

]
. (19)

The first component is the expected discounted dividend stream paid prior to bond ma-

turity, while the second is the expected discounted payoff at bond maturity. Closed-form

solutions for equity value, beta, and expected return are unavailable in the presence of

leverage. However, these quantities can be estimated through simulation. Appendix B.2

describes the simulation details.

In the presence of leverage, equity and debt expected returns are still determined by

exposures to market and long-run risk, as in equation (18).11 Simulations show that equity

value is more sensitive to economic growth shocks than debt value. Since the influence of

economic growth shocks on equity is amplified by leverage, levered equity beta is generally

higher than unlevered beta. Figure 3 exhibits estimated conditional equity betas for firms

with one year to debt maturity and a market debt ratio of 0.5, confirming that levered

equity betas are indeed higher than their unlevered counterparts (Figure 3 versus Figure

2). Therefore, expected excess equity returns for levered firms are higher than for unlevered

firms (Figure 3 versus Figure 2), while the positive expected return–share ratio relation

persists among levered firms.

11Firm levered equity return follows the process dRVi
t = µVi

t dt + ϕi
XdWX + O(

√
dt), where ϕi

X is the

elasticity of firm equity value with respect to aggregate growth shocks. The O(
√
dt) term contains all other

diffusion terms (e.g. dWθ and dWD) that are uncorrelated with growth shocks. Then µVi
t = (γ−1)λ

κ+β σXϕi
X =

ϕi
X

G
σXGX

µt ≡ βVi
t µt. We do not have an analytical expression for ϕi

X , which prevents us from deriving a

closed-form solution for βVi
t .
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2 Cross-Sectional Tests

In this section, we test the cross-sectional implications of the long-run risk model. Section

1.3 derives two cross-sectional predictions: (i) expected return is positively related to long-

run share ratio, and (ii) expected return is positively related to economic growth beta.

Since share ratios are based on cash-flow data while economic growth betas are based on

return covariances, these predictions are complementary in nature.

2.1 Data

Aggregate parameters and the time series of expected economic growth (Xt) are estimated

using quarterly US dividend and consumption data from 1948 to 2008. Aggregate dividends

are calculated for the CRSP value-weighted index following Cochrane (2008).12 Aggregate

consumption is non-durable goods plus services from the NIPA tables of the Bureau of

Economic Analysis. We convert the data to a real, per capita basis by adjusting for CPI

inflation and the US population.

We test the implications of the long-run risk model using the cross section of U.S.

stocks. Stock return data is from CRSP and financial information is from Compustat unless

otherwise noted. We construct 20 value-weighted industry portfolios following Menzly,

Santos, and Veronesi (2004). We also form value-weighted decile portfolios based on several

firm characteristics previously shown to be related to average returns. Construction of

the book-to-market, size, and momentum characteristics follows Fama and French (2008).

Dispersion is calculated following Avramov, Chordia, Jostova, and Philipov (2009b) as the

standard deviation of analyst fiscal year one earnings estimates from I/B/E/S divided by

the absolute value of the mean estimate. As in Ang, Hodrick, Xing, and Zhang (2006), IV

is the standard deviation of pricing errors relative to the Fama–French (1993) three-factor

12Cochrane (2008) points out that CRSP dividends capture all payments to investors including cash
mergers, liquidations, and repurchases.
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model in a regression using daily returns over the past month.13 Our proxy for credit risk

is the Campbell, Hilscher, and Szilagyi (2008) measure which models the probability of

corporate failure over the next year as a function of accounting and market variables.

Portfolio dividend shares are calculated in each quarter by dividing the portfolio divi-

dend by the sum of the dividends from all portfolios. Portfolio dividend formation follows

Bansal, Dittmar, and Lundblad (2005). In particular, each dividend series assumes that an

investor extracts the dividends and reinvests the capital gains. Dividends are aggregated

across months within a quarter to form quarterly dividends, and the final dividend figure for

quarter t is the average dividend in quarters t− 3 to t to diminish the effects of seasonality

in dividends.

The sample periods vary across sets of test assets based on data availability. For tests

based on industry, book-to-market, size, and momentum portfolios or individual firms, the

sample period is July 1948 to June 2008. IV portfolios have a sample period of July 1965

to June 2008, while dispersion and distress risk portfolios are examined from July 1981 to

June 2008.

Our tests in this section focus on industry, book-to-market, size, and momentum port-

folios. Table I displays average excess quarterly returns for these test assets. There is

relatively little dispersion in the average industry returns in Panel A, as half of the portfo-

lio returns are between 2.00% and 2.20% per quarter. Overall, average returns range from

1.50% (Apparel) to 2.57% (Railroads). Panel B shows that anomaly-based portfolios cap-

ture much larger return spreads. The high-minus-low portfolios for book-to-market, size,

and momentum earn average returns of 1.71%, −2.35%, and 1.77%, respectively.

13We thank Kenneth French for making factor returns available through his website at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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2.2 Cash Flow-Based Evidence

We now test the model-implied positive relation between share ratio and expected return

shown in Theorem 3. Share ratio, which is an unobserved characteristic, is estimated by

first estimating θ̄i for each portfolio using a Bayesian approach. The Markov chain Monte

Carlo (MCMC) procedure imposes the parameter restrictions
∑N

i=1 θ̄
i = 1, α > 0, and δ > 0

while ensuring that Σt captures the dividend share dynamics from equations (8) and (9).

Since direct sampling is difficult under these restrictions, we develop a Metropolis–Hastings

algorithm to estimate θ̄i. The share ratio time series is then calculated by dividing θ̄i by θit

in each quarter. Finally, we find the full-period relation between average returns and log

share ratio, λθ̄/θ, by estimating

R
i

t = λ0,t + λθ̄/θ,t log
θ̄i

θit−1

+ ϵit, ϵit ∼ N(0, σ2
t ), (20)

λt = λ+ νt, νt ∼ N(0, Vλ), (21)

using a hierarchical Bayesian regression in the spirit of a Fama–MacBeth (1973) approach.

We relate average returns to log share ratio to capture the concave theoretical relation

between the two variables. Since we include a new draw of θ̄ in each iteration, the resulting

estimates reflect uncertainty about estimated share ratios. Further estimation details are

provided in Appendix B.1.1.14

Table II displays estimates of long-run dividend share and share ratio. Panel A shows

figures for industry portfolios, and the industries are sorted by estimated share ratio. Ac-

cording to the long-run dividend share estimates, future dividends to the investment strat-

egy are expected to be dominated by a few industries. For example, the Petroleum industry

has a long-run dividend share of 0.385, implying this industry is expected to eventually pay

14Discussion of statistical significance is based upon Bayesian credible intervals. The reported cross-
sectional R2 follows Gelman and Pardoe (2006) who develop this statistic for Bayesian hierarchical models.
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nearly two-fifths of the total market dividend. This estimate reflects not only the large

initial size of the Petroleum industry, which constituted 16.3% of the total market capital-

ization and paid 11.4% of the aggregate dividend at the beginning of the sample period, but

also high expected dividend growth. The share ratio estimate of 1.58 implies that Petroleum

expected dividend growth was expected to outpace market dividend growth throughout the

sample period. In fact, the Petroleum portfolio dividend grew faster than the market div-

idend by about 0.4% per quarter. Thus, relative to other industries, Petroleum industry

cash flows has high duration and consequently higher exposure to long-run risk during the

sample period.

Panel B of Table II shows estimates for book-to-market, size, and momentum portfolios.

The cross-sectional patterns in share ratio are pronounced. Value firms have high estimated

share ratio (8.75 for portfolio ten) while growth firms have low share ratio (0.26 for portfolio

one). Similarly, share ratio estimates for size portfolios show high exposure to long-run risk

for small firms (921.59), while big firms are less exposed (0.41). Finally, winner stocks

display high share ratio (2.24) relative to losers (0.06) in the cross section. All three sets of

portfolios display a general pattern in share ratio which is consistent with a long-run risk

explanation for the return spreads in Table I.

Table III presents the results of the formal tests. Panel A shows a significant positive

relation between share ratio and average returns for industry portfolios, consistent with the

prediction of Theorem 3. An increase of one in log share ratio corresponds to an increase in

average return of about 0.63% per year. In Panel B, average returns are significantly related

to share ratio for book-to-market, size, and momentum portfolios. Furthermore, the effects

are economically large. Based on the estimated coefficients and the average differences in

log share ratio, share ratio explains quarterly average return spreads for High-Low portfolios

of 0.54% (book-to-market), −1.27% (size), and 1.25% (momentum). Our cash-flow based

results are consistent with the findings of Bansal, Dittmar, and Lundblad (2005), who find
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that the cash-flow characteristics of book-to-market, size, and momentum portfolios are

consistent with a long-run risk explanation using measures different from our own. In sum,

there is generally strong evidence in favor of the primary cash flow-based prediction of the

long-run risk model, as share ratio is positively related to average returns across a broad

set of test assets.

2.3 Return-Based Evidence

Equation (16) predicts that expected returns are positively related to economic growth

betas, which capture exposure to unexpected innovations in Xt. To test this model impli-

cation, we utilize a Bayesian approach. Since Xt is a latent variable, we first estimate the

unexpected innovations using a forward-filtering, backward-sampling (FFBS) technique.

We then simultaneously estimate the system of equations,

Ri
t,y = αiy + βim,yR

m
t,y + βiX,y(∆Xt,y) + ϵit,y, ϵit,y ∼ N(0, σ2

i,y), (22)

R
i

y = λ0,y + λm,yβ
i
m,y + λX,yβ

i
X,y + ϵiy, ϵit ∼ N(0, σ2

y), (23)

λy = λ+ νt, νt ∼ N(0, Vλ), (24)

using a hierarchical Bayesian regression. Similar to a Fama–MacBeth approach, equation

(22) is a time-series regression for each firm-period which captures exposures to the risk

factors for firm i in the three-year period y, while equation (23) is a cross-sectional regression

of average returns on factor loadings within each period y. Finally, equation (24) aggregates

the period-by-period estimates to find a full-period estimate λ for the prices of risk. The

primary advantage of this simultaneous estimation approach is that measurement error

biases, which typically arise in the cross-sectional regression of average returns on estimated

betas, are mitigated (see Davies (2011) for further discussion of this method). Appendix
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B.1.1 further discusses our approach.

Table IV shows the cross-sectional test results for the long-run risk model with the

CAPM included for comparison. Among industry portfolios in Panel A, the CAPM and

long-run risk model both perform poorly. There is little evidence that exposure to either

market risk or long-run risk is priced in the cross section, and the intercepts for both

models are significantly positive. However, valuable information is potentially lost during

portfolio formation (e.g., Litzenberger and Ramaswamy (1979)) and tests of factor models

are quite sensitive to the choice of test portfolios (e.g., Ahn, Conrad, and Dittmar (2009)

and Lewellen, Nagel, and Shanken (2010)). Individual firms may be a particularly attractive

set of test assets, as argued by Avramov and Chordia (2006). Ang, Liu, and Schwarz (2010)

show there is a loss of efficiency from forming portfolios and note that tests of whether a

factor carries a significant price of risk can differ greatly using stocks or portfolios. They

conclude that “there should be no reason to create portfolios and the asset pricing tests

should be run on individual stocks instead.” We therefore also test the long-run risk model

among individual firms.

Panel B of Table IV shows that the CAPM and long-run risk model perform relatively

well in the cross section of stocks. Exposure to the market and long-run risk factors are

significantly and positively priced in the cross section of stocks, as predicted by the model.

For the long-run risk model, the market factor carries a quarterly risk premium of 2.42%,

while the premium for the long-run risk factor is 0.26%. The cross-sectional dispersion

in economic growth betas is higher than for market betas, with a cross-sectional standard

deviation of 3.32 for estimated βx versus 1.84 for βm. Both sources of risk therefore generate

economically large return spreads in the cross section of stocks. Further, the intercept for

the long-run risk model is −0.29% and not different from zero in a statistical sense.

We find support for the long-run risk model, as the prices of risk for the market and

economic growth factors are positive and the intercept is not different from zero. However,
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there is some evidence that the model is misspecified. When characteristics are included

in the model, book-to-market carries a significant incremental ability to forecast returns.

Size contains no additional information about returns. Past returns associated with mo-

mentum are insignificantly negatively related to returns. Our base procedure requires the

characteristics to forecast average returns over a three-year period and momentum is a

short-run phenomenon. In unreported results, we find that when using one-year periods,

momentum has a coefficient of 0.86% (standard deviation of 0.30%) when added to the

CAPM versus 0.57% (standard deviation of 0.26%) after including the economic growth

factor. The misspecification has several potential sources, including the imperfect mea-

surement of economic growth innovations or a shortcoming of the long-run risk model. It

is important to note, however, that economic growth betas continue to have a large and

significant impact on average returns after controlling for characteristics which are often

considered to be primary determinants of cross-sectional returns (e.g. Daniel, Grinblatt,

Titman, and Wermers (1997)).

2.4 Discussion

The empirical evidence in Sections 2.2 and 2.3 supports the primary cross-sectional pre-

dictions of the long-run risk model. Measures of exposure to long-run risk based on either

cash flows or return covariances are positively related to average returns. Long-run risk

exposure does, therefore, appear to be an important determinant of expected returns.

The evidence with respect to cross-sectional anomalies based on book-to-market, size,

and momentum is less clear. We do find evidence that the cash flows of portfolios sorted on

these measures display patterns in risk exposure consistent with a long-run risk explanation.

However, important shortcomings of the basic model should be noted. For example, taking

dividend-to-price as a proxy for book-to-market, the model actually produces a growth

22



premium. High long-run share ratio firms have high expected returns matched with low

dividend-to-price ratios. Similarly, the high valuations of high share ratio firms is somewhat

at odds with the size premium, although variation in dividend share which is unrelated to

expected returns can also account for firm size. Modifications to the basic model appear

necessary to overcome these issues. Potential model modifications to avoid these problems

are offered in a long-run risk context by Croce, Lettau, and Ludvigson (2010) and Ai

and Kiku (2011). Santos and Veronesi (2010) show a similar issue in the habit formation

framework, and note that substantial heterogeneous cash flow risk is a potential, albeit

imperfect, solution.

3 Dispersion, Idiosyncratic Volatility, and Credit Risk

Effects

Thus far, we have laid out the cross-sectional predictions of the long-run risk model and

demonstrated the model’s considerable success in explaining the cross section of returns.

We now turn to examining an intriguing feature that arises within the model, which is a

negative cross-sectional relation between exposures to firm-specific and systematic risks.

In essence, uncertainty about firm prospects tends to be inversely related to long-run risk

exposure.

We investigate this inverse relation in the context of analyst forecast dispersion, IV, and

credit risk, three characteristics related to firm-specific uncertainty which are each nega-

tively related to average returns as shown in Table V. Consistent with the prior literature,

we find that average returns are significantly negatively related to dispersion (Diether, Mal-

loy, and Scherbina (2002)), IV (Ang, Hodrick, Xing, and Zhang (2006)), and credit risk

(Dichev (1998) and Campbell, Hilscher, and Szilagyi (2008)). The average quarterly return
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spreads between the high and low portfolios are economically large at−2.31% for dispersion,

−3.96% for IV, and −3.20% for credit risk. In this section, we develop theoretical relations

between expected returns and the dispersion, IV, and credit risk characteristics. After

showing that the three anomalies are closely related both theoretically and empirically, we

test whether the cash flows and returns of portfolios based on the three characteristics are

consistent with a long-run risk explanation.

3.1 Theoretical Relations

We first establish our proxies for each characteristic within the model. Based on the firm

dividend growth process formulated in equation (12), dispersion is proxied by a measure of

firm cash-flow volatility,

Dispersionit = σ(dDi
t) = Dt

√
θi2t σ

2
D + δ2θit(1− θit). (25)

This interpretation of dispersion is consistent with Barron, Stanford, and Yu’s (2009) find-

ing that the dispersion effect is driven by earnings uncertainty rather than information

asymmetry. Further, our measure of cash-flow variability is closely related to the measures

of Zhang (2006) and Huang (2009) which are also negatively related to average returns.

While our dispersion measure is solely based on cash-flow characteristics, the IV and

credit risk measures are endogenously determined through equilibrium pricing. The id-

iosyncratic component of instantaneous return volatility formulated in equation (15) is

IV i
t = δ

√
1− θit
θit

(
1 +

θitG
i
θ

Gi

)
. (26)

Finally, we examine credit risk in a Merton (1974) framework, so default occurs if VT < B.

Default risk in this context is heavily dependent on the probability of large decreases in
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firm value, which suggests a close link with firm return volatility. A closed-form solution

for the probability of default is not available, but we can easily approximate credit risk

using simulation. Indeed, we find a close relation between volatility and credit risk.

Our model produces a negative cross-sectional relation between expected returns and

Dispersioni from equation (25). Under the sufficient condition θit < 1/2 (which must

hold for at least N − 1 of the N firms), dispersion is negatively related to share ratio (see

Appendix A.4). This relation, in turn, produces the dispersion effect in returns. Figure 4

confirms this negative relation among simulated firms.

We note that, since dispersion is defined solely with respect to cash-flow uncertainty,

this result is dependent on our assumptions about dividend dynamics. Like our theoretical

measures, dispersion is closely related to IV and credit risk in the data. However, the IV

and credit risk effects in our framework are perhaps more interesting, as they arise through

equilibrium prices determined by investors who are exposed to firm-specific and systematic

risks.

To examine the IV effect, note that the elasticity of firm value with respect to dividend

share,
θitP

i
θ

P i , can be written

θitP
i
θ

P i
= 1 +

θitG
i
θ

Gi

=

∫∞
t
S(Xt, τ)e

−ατds∫∞
t
S(Xt, τ)

(
e−ατ + θ̄i

θit
(1− e−ατ )

)
ds
. (27)

Therefore, the term in parentheses from equation (26) simply reflects the sensitivity of firm

value to firm-specific cash-flow shocks. This term only depends on dividend share through

share ratio and is sharply decreasing in share ratio. In essence, the value of any firm

increases with positive movement in dividend share, but this increase is greatest for low

duration stocks. Low share ratio firms are strongly impacted due to their reliance on short-
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run cash flows. For high share ratio firms, on the other hand, the expected mean reversion

in dividend share diminishes the impact of short-run shocks on their high-duration cash

flows. IV arises from these short-run shocks and is thus negatively related to share ratio

under the sufficient conditions in Theorem 4.

Theorem 4. IV decreases in share ratio under the restriction on the (θ̄, α)-plane(
θ̄i

θit
− 2θ̄i

)
(
√
2αM − 1) > 1 where M = |S(Xt,τ)|1

|S(Xt,τ)|2 is independent of α, and | · |i represents

the i-th norm.

Proof. See Appendix A.4.

This negative relation translates to a negative IV–expected return relation in our model,

which is shown in Figure 4.

The credit risk effect is closely related to the IV effect. Intuitively, the large majority of

a firm’s return volatility is idiosyncratic (e.g. Campbell, Lettau, Malkiel, and Xu (2001)).

Therefore, one would expect IV to be the primary cause of defaults.15 Low share ratio firms

with high levels of IV are most likely to experience this type of default. Meanwhile, high

share ratio firms have low IV and do not often default for firm-specific reasons. Default risk

models designed to predict bankruptcies and defaults on a year-to-year basis (e.g., Altman

(1968), Ohlson (1980), and Campbell, Hilscher, and Szilagyi (2008)) are likely to identify

firms with high IV as high default risk firms. However, in equilibrium these firms have

low systematic risk exposures leading to a negative relation between expected return and

distress risk estimates.

Simulations confirm this intuition for the credit risk effect. Most defaults occur primarily

due to firm-specific shocks, while default waves accompany large economic growth shocks.

15Consistent with this intuition, Campbell and Taksler (2003) find that the IV of firm equity is as effective
as credit rating in explaining cross-sectional variation in credit spreads. Additionally, the time series of
credit spreads generally matches up with average IV, further suggesting IV plays an important role in
defaults.
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A negative expected return–credit risk relation therefore appears across a wide variety of

parameterizations (see Appendix A.4). Figure 4 demonstrates the credit risk effect in our

model.

In sum, we have shown theoretical connections between the dispersion, IV, and credit

risk effects. Cross-sectional differences in cash flow timing tend to produce a negative

relation between firm-specific risk and exposure to systematic risk in the cross section.

Expected returns are negatively related to each of the three firm characteristics as a result.

3.2 Empirical Evidence

Prior research suggests positive relations between dispersion and IV (e.g., Barron, Stanford,

and Yu (2009)), dispersion and credit risk (e.g., Avramov, Chordia, Jostova, and Philipov

(2009b)), and IV and credit risk (e.g., Campbell and Taksler (2003)). Table VI confirms

that all three characteristics are closely related. Panel A exhibits time-series averages of

the monthly cross-sectional Spearman rank correlations between dispersion, IV, and credit

risk. The evidence shows that a firm with high IV is quite likely to have high distress risk as

evidenced by the correlation of 0.47 between the two measures. Similarly, the dispersion–IV

correlation is 0.31 and the dispersion–default probability correlation is also 0.31.

Panel B of Table VI examines the characteristics of firms in three groups of decile

portfolios sorted on dispersion, IV, and distress risk. It displays the mean dispersion, IV,

and probability of default across firms in each portfolio. In the ten dispersion portfolios,

both IV and the probability of default are nearly monotonically increasing as the dispersion

ranking increases. Similar results hold for the IV and credit risk portfolios, with all three

characteristics having nearly monotonic patterns across the portfolios.

More specifically, moving from the lowest to highest dispersion portfolio, the mean

IV increases from 2.29% to 3.51%, and the mean default probability rises from 0.08% to
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0.40%. Similarly, moving from the lowest to highest IV portfolio, the mean dispersion rises

from 0.11 to 1.49, and the mean default probability advances from 0.11% to 3.29%. Finally,

moving from the lowest to highest distress risk portfolio, the mean dispersion rises from 0.18

to 1.75, and the mean IV increases from 2.15% to 9.89%. Overall, the evidence exhibited

in Table VI illustrates that a strong empirical link exists between the dispersion, IV, and

credit risk measures. The remaining task is to show that all three effects are explained by

exposures to long run risk.

We begin with share ratio, the cash-flow based measure of long-run risk exposure. Table

VII shows estimates of share ratio for dispersion, IV, and distress risk portfolios. An overall

negative pattern exists between share ratio and each of the characteristics. The lowest

dispersion portfolio displays a share ratio estimate of 6.68 versus just 0.72 for the highest

dispersion portfolio. Similarly, the high IV portfolio’s share ratio (0.79) is much larger

than the low IV share ratio (0.02). The share ratio difference between the low and high

default risk portfolios is smaller (1.93 versus 1.75), while a general negative pattern appears

among portfolios one through nine. Further investigation reveals considerable volatility in

the dividend share paid by the top default risk deciles. In fact, the combined dividend of

the two highest distress risk portfolios regularly fluctuates between high points greater than

1% of the aggregate dividend to low points of paying less than $70 of every $1, 000, 000

dollars of market dividend. The proposed dividend share process may not provide an

adequate description of the extremely low dividends of distressed firms during bad times,

but the evidence in Table VII is suggestive of a negative relation between default risk and

share ratio. Indeed, share ratio estimates of the portfolios imply that each of the three

characteristics should be negatively related to expected returns.

Table VIII formally tests the relation between average returns and share ratio among

dispersion, IV, and distress risk portfolios. Dispersion portfolio returns are positively re-

lated to share ratio at a 5% significance level with a coefficient of 0.22% per quarter. The
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relation between returns and share ratio among IV portfolios is even stronger, with a co-

efficient of 0.64% which is significant at a 1% level. Distress risk portfolios, in contrast

to dispersion and IV portfolios, display only a small, insignificantly positive relation as a

result of the previously mentioned issues with the dividend shares of the high default risk

portfolios. Excluding these two portfolios, we find a larger positive, though insignificant,

coefficient of 0.33%.

Finally, we examine whether the dispersion, IV, and distress risk characteristics maintain

their abilities to forecast returns after controlling for exposures to market risk and long-run

risk. Table IX shows the test results for the period 1981 to 2008. Estimates for the CAPM

and long-run risk model are shown for the shorter sample period. As in the previous results

in Table IV, market risk is significantly positively rewarded in both models. The coefficient

for the economic growth factor is 0.23% and over 90% of the posterior is positive. The

sample is smaller both in length and breadth due to the characteristics data requirement,

perhaps accounting for the loss of statistical significance.

When the three characteristics are introduced into the CAPM, dispersion and IV appear

to help explain the cross section even after controlling for market risk. The coefficient on

dispersion is −0.48% (over 94% of the posterior is negative) and the corresponding figure

for IV is significant at the 5% level at −0.52%. Including default risk as a characteristic

does not appear to help explain the cross section, as the coefficient is only −0.03%.16

After the economic growth factor is included, the explanatory abilities of dispersion

and IV are diminished. The magnitude of the dispersion coefficient is about 40% smaller

in the long-run risk model compared to the CAPM. Similarly, the IV coefficient drops

from −0.52% to −0.36% and loses significance after including the economic growth factor.

These results provide evidence that the long-run risk model (at least partially) captures

16In unreported results, we find an insignificant coefficient on default risk of −0.44% in tests using
one-year periods, suggesting the one-year holding period may be important for the credit risk effect.
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the cross-sectional effects related to dispersion and IV.

In sum, we find evidence consistent with our model’s prediction that the dispersion,

IV, and distress risk anomalies can be explained by long-run risk. The three variables

are closely linked, and their cash-flow characteristics appear to be largely consistent with

a long-run risk explanation. Finally, there is some evidence that a long-run risk factor

captures much of the cross-sectional variation related to dispersion and IV.

3.2.1 Reconciling the Empirical IV Evidence

The empirical literature is conflicted about the sign of the IV–return relation. For example,

Ang, Hodrick, Xing, and Zhang (2006, 2009) and Jiang, Xu, and Yao (2009) find a nega-

tive relation between returns and IV. On the other hand, Malkiel and Xu (2002) and Fu

(2009) show a positive IV–return relation. Accordingly, Bali and Cakici (2008) and Huang,

Liu, Rhee, and Zhang (2010) question whether a robust IV–return relation exists. This

disagreement is perhaps unsurprising in light of our theoretical results.

In our model, IV is determined by two firm characteristics – dividend share and long-

run share ratio. IV is decreasing in both measures. However, the relation between IV

and expected returns is fully driven by share ratio. High share ratio firms have high

expected returns, while share ratio negatively influences IV which produces a negative

cross-sectional relation between IV and expected returns. As previously noted, however,

IV is also negatively related to dividend share. Dividend share tends to be negatively related

to expected returns in the cross section since high θt tends to be associated with low θ
θt
.

Thus, a spurious positive IV–return relation can appear if the high (low) IV portfolios from

a given sorting procedure have low (high) dividend share.

Tables X and XI illustrate this possibility. Panel A of Table X shows average charac-

teristics and returns for portfolios sorted by firm dividend share. Dispersion, IV, default

probability, and average returns are each negatively associated with θt, as predicted by the
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model. These patterns are suggestive of positive relations between expected returns and

each characteristic. Panel B, on the other hand, examines portfolios sorted by dividend

growth over the past year. Realized dividend growth is a rough proxy for θ
θt

which is avail-

able at the firm level.17 While dispersion, IV, and default risk are negatively related to

θ
θt
, average returns are increasing to produce negative relations between returns and the

characteristics.

When stocks are double-sorted by dividend share and share ratio in Table XI, negative

relations between the characteristics and returns dominate the evidence. Consistent with

model predictions, dispersion, IV, and default risk are decreasing in both θt and
θ
θt
. Average

returns are generally increasing in θ
θt
and decreasing in θt, as in Table X. However, the return

spreads in the θt dimension appear to be largely unrelated to spreads in characteristics. The

largest differences in characteristics occur among low dividend growth firms, matched by

the smallest average return spread (−0.46%). Conversely, the largest average return spread

(−2.24%) is associated with the smallest differences in characteristics. In contrast, average

return spreads in the θ
θt

dimension match the patterns in characteristic spreads, suggesting

a closer link between the characteristics and share ratio.

The nature of the observed IV–return relation will therefore depend on the IV proxy and

sorting procedure. An IV proxy which is more closely related to θt than to θ
θt

may exhibit

a positive IV–return relation. In contrast, the IV proxy of Ang, Hodrick, Xing, and Zhang

(2006) is closely (and negatively) related to θ
θt
, as demonstrated in Table VII, producing a

negative IV–return relation. Furthermore, our model reconciles the evidence that the IV

effect is strong in value-weighted portfolios and essentially non-existent in equally weighted

17An unpleasant feature of using realized dividend growth to proxy for θ
θt

is that the realization is the

sum of expected dividend growth (which is positively related to θ
θt
) and an unexpected shock. Firms with

high uncertainty are more likely to experience extreme shocks, so we are more likely to misclassify high

dispersion, IV, and default risk firms as having exceptionally low or high θ
θt
. The general cross-sectional

patterns appear to be unaffected by this shortcoming of our proxy.

31



portfolios (Bali and Cakici (2008)). The returns of equally weighted portfolios can be

dominated by small stocks while value-weighted portfolios draw more information from

relatively large stocks. High IV portfolios tend to be populated with many small stocks,

many of which have high IV due to low dividend share. On the other hand, the high IV

of relatively large stocks is almost always driven by low share ratio. Thus, value-weighted

returns are driven by variation in share ratio, while the IV–return relation is clouded by

dividend share with equal weights. In sum, our model’s predictions are consistent with the

observed sensitivity of the IV effect.

4 Conclusion

This paper develops and applies an intertemporal asset pricing model in a long-run risk

economy with a formal cross section of firms. Expected returns in the economy are positively

related to cash flow duration, while firms in the cross section are characterized by expected

cash flow timing. Firms with high share ratio, which corresponds to high expected dividend

growth, are more sensitive to shocks to the persistent economic growth rate and hence

command higher risk premiums.

The model predictions are broadly supported in the data. Exposures to long-run risk

measured using either cash flows or return covariances are positively related to returns in

the cross section. Portfolios sorted on book-to-market, size, and momentum display cash-

flow characteristics consistent with a long-run risk explanation, although challenges remain

in fully explaining these return patterns.

Finally, our model suggests that the puzzling negative cross-sectional relations between

expected stock returns and analysts’ forecast dispersion, IV, and credit risk emerge as an

equilibrium response to long-run risk. While high duration firms are highly exposed to

systematic shocks, low duration firms are particularly sensitive to firm-specific dividend
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shocks. As a result, firms with high measures of idiosyncratic risk tend to have low sys-

tematic risk and low expected returns, which explains the observed patterns. The evidence

supports a long-run risk explanation of these effects, and we provide a potential resolution

of the empirical sensitivity of the IV effect.
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Table I: Average Quarterly Portfolio Returns

This table reports average quarterly excess returns for value-weighted portfolios. Panel A shows
returns of 20 industry portfolios formed following Menzly, Santos, and Veronesi (2004). Panel B displays
portfolios based on book-to-market, size, and momentum. These three characteristics are formed following
Fama and French (2008). The book-to-market and size portfolios are rebalanced annually at the end of
June, while the momentum portfolios are rebalanced monthly. The table reports t-stats in parentheses.
The sample period is July 1948 to June 2008.

Panel A: Average Returns of Industry Portfolios

Industry Avg. Ret. (t-stat)

Railroads 2.57 (3.76)
Petroleum 2.55 (4.85)
Mining 2.36 (3.55)
Fab. Metals 2.24 (3.76)
Food 2.20 (4.16)
Manufacturing 2.20 (3.38)
Machinery 2.18 (3.08)
Electrical Eq. 2.13 (2.78)
Financial 2.13 (3.50)
Transport Eq. 2.11 (3.20)
Retail 2.06 (3.14)
Chemical 2.04 (3.80)
Dept. Stores 2.03 (3.00)
Paper 2.02 (3.27)
Other Transport. 1.81 (2.28)
Prim. Metals 1.78 (2.47)
Utilities 1.72 (3.69)
Construction 1.58 (2.14)
Other 1.57 (2.75)
Apparel 1.50 (2.00)
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Panel B: Average Returns of Anomaly Portfolios

Book-to-Market Size Momentum
Portfolio Avg. Ret. (t-stat) Avg. Ret. (t-stat) Avg. Ret. (t-stat)

Low 1.46 (2.16) 4.09 (4.50) 1.07 (1.00)
2 1.48 (2.59) 2.93 (3.43) 1.43 (1.84)
3 1.82 (3.31) 2.58 (3.08) 1.26 (1.88)
4 1.73 (3.25) 2.38 (2.98) 1.82 (3.16)
5 2.13 (4.16) 2.26 (2.94) 1.92 (3.65)
6 2.23 (4.58) 2.21 (2.99) 2.91 (3.64)
7 2.22 (4.06) 2.13 (3.01) 2.14 (4.13)
8 2.45 (4.37) 2.15 (3.22) 2.03 (3.96)
9 2.78 (4.89) 2.21 (3.64) 2.40 (4.02)
High 3.17 (4.34) 1.73 (3.47) 2.84 (3.66)

High-Low 1.71 (2.71) -2.35 (-3.13) 1.77 (1.98)
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Table II: Long-Run Dividend Share and Share Ratio Estimates

This table reports the average draws of long-run dividend share, θ̄, and share ratio, θ̄/θt, for the
test portfolios. Panel A reports these statistics for 20 industry portfolios while Panel B shows statistics
for ten portfolios sorted on book-to-market, size, and momentum. Industries are defined following Menzly,
Santos, and Veronesi (2004). Long-run dividend share is estimated using a Markov chain Monte Carlo
(MCMC) technique with Metropolis–Hastings steps as discussed in Appendix B.1.1. We display the mean
and standard deviation of θ̄ and the time-series median of mean and standard deviation θ̄/θt draws from
the MCMC procedure. The sample period is July 1948 to June 2008.

Panel A: Industry Portfolios

Industry θ̄ σ(θ̄) θ̄/θt σ(θ̄/θt)

Food 0.098 (0.041) 1.865 (0.785)
Petroleum 0.385 (0.071) 1.577 (0.291)
Chemical 0.173 (0.057) 1.537 (0.503)
Machinery 0.057 (0.028) 1.433 (0.699)
Railroads 0.046 (0.026) 1.402 (0.774)
Financial 0.030 (0.017) 1.293 (0.756)
Paper 0.030 (0.018) 1.216 (0.737)
Retail 0.016 (0.011) 1.048 (0.736)
Mining 0.021 (0.014) 1.030 (0.673)
Fabricated Metals 0.012 (0.009) 0.858 (0.653)
Manufacturing 0.015 (0.011) 0.786 (0.560)
Dept Stores 0.029 (0.019) 0.717 (0.471)
Other Trans 0.002 (0.002) 0.465 (0.375)
Transport Equipment 0.036 (0.023) 0.422 (0.271)
Other 0.023 (0.017) 0.353 (0.260)
Electrical Equipment 0.010 (0.008) 0.271 (0.215)
Apparel 0.001 (0.001) 0.186 (0.151)
Utilities 0.011 (0.009) 0.177 (0.142)
Primary Metals 0.007 (0.005) 0.172 (0.139)
Construction 0.001 (0.000) 0.039 (0.031)
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Panel B: Anomaly Portfolios

Industry θ̄ σ(θ̄) θ̄/θt σ(θ̄/θt)

Book-to-Market
Low 0.033 (0.022) 0.263 (0.177)
2 0.037 (0.024) 0.313 (0.205)
3 0.026 (0.019) 0.219 (0.162)
4 0.032 (0.022) 0.281 (0.189)
5 0.143 (0.061) 1.219 (0.518)
6 0.168 (0.065) 1.660 (0.639)
7 0.073 (0.041) 0.995 (0.559)
8 0.049 (0.029) 0.779 (0.452)
9 0.193 (0.066) 4.279 (1.466)
High 0.245 (0.073) 8.751 (2.618)

Size
Low 0.178 (0.110) 921.593 (570.481)
2 0.061 (0.044) 79.043 (56.262)
3 0.030 (0.024) 17.035 (13.469)
4 0.030 (0.023) 9.320 (7.329)
5 0.029 (0.021) 4.692 (3.382)
6 0.031 (0.026) 2.885 (2.367)
7 0.047 (0.039) 2.345 (1.921)
8 0.084 (0.064) 2.085 (1.602)
9 0.179 (0.116) 1.693 (1.097)
High 0.331 (0.182) 0.408 (0.224)

Momentum
Low 0.001 (0.000) 0.060 (0.030)
2 0.006 (0.002) 0.134 (0.052)
3 0.016 (0.004) 0.194 (0.052)
4 0.067 (0.007) 0.620 (0.066)
5 0.132 (0.010) 1.027 (0.077)
6 0.149 (0.011) 1.113 (0.078)
7 0.177 (0.011) 1.179 (0.074)
8 0.178 (0.011) 1.316 (0.083)
9 0.184 (0.011) 1.649 (0.100)
High 0.090 (0.008) 2.235 (0.193)
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Table III: Relation between Share Ratio and Average Return

This table reports the cross-sectional relations between average returns and share ratio. Panel A
shows the relation among industry portfolios, while Panel B displays results for portfolios formed on
book-to-market, size, and momentum. The reported cross-sectional relations between returns and lagged
share ratios are estimated from equations (20) to (21) using a hierarchical Bayesian regression. The
portfolio share ratios are estimated using a Markov chain Monte Carlo (MCMC) technique. Further
discussion of the estimation technique appears in Appendix B.1.1. Standard errors are reported in
parentheses and an ∗ (∗∗) denotes statistical significance at the 5% (1%) level. The sample period is July
1948 to June 2008.

Panel A: Industry Portfolios

Portfolios λ0 λθ̄/θ R2

Industries 2.183∗∗ 0.157∗∗ 0.013
(0.523) (0.067)

Panel B: Anomaly Portfolios

Portfolios λ0 λθ̄/θ R2

Book-to-Market 2.230∗∗ 0.158∗ 0.087
(0.527) (0.077)

Size 2.188∗∗ 0.171∗ 0.268
(0.653) (0.084)

Momentum 2.035∗∗ 0.353∗ 0.170
(0.553) (0.165)
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Table IV: Cross-Sectional Test of the Long-Run Risk Beta-Pricing Model

This table reports the results of cross-sectional tests of the CAPM and long-run risk factor model.
Panel A shows the relation among industry portfolios, while Panel B displays results for individual firms.
The reported relations are estimated from equations (22) to (24) using a hierarchical Bayesian regression.
The innovations in Xt are estimated using a forward filtering–backward sampling (FFBS) algorithm. The
size, book-to-market, and momentum characteristics in Panel B are measured at the beginning of each
three-year period. Further discussion of the estimation technique appears in Appendix B.1.1. Standard
errors are reported in parentheses and an ∗ (∗∗) denotes statistical significance at the 5% (1%) level. The
sample period is July 1948 to June 2008.

Panel A: Industry Portfolios

Model λ0 λm λx R2

CAPM 1.377∗∗ 0.627 0.201
(0.335) (0.469)

LRR 1.278∗∗ 0.691 0.006 0.283
(0.333) (0.443) (0.198)

Panel B: Individual Firms

Model λ0 λm λx λsize λbm λmom R2

CAPM -0.488 2.513∗∗ 0.414
(0.394) (0.252)

LRR -0.287 2.424∗∗ 0.263∗∗ 0.496
(0.372) (0.240) (0.099)

CAPM (w/ Char.) -0.480 2.502∗∗ -0.037 0.751∗∗ -0.414 0.470
(0.466) (0.311) (0.114) (0.189) (0.350)

LRR (w/ Char.) -0.388 2.517∗∗ 0.372∗∗ -0.033 0.681∗∗ -0.490 0.548
(0.465) (0.262) (0.117) (0.117) (0.186) (0.356)
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Table V: Anomaly Portfolio Return Characteristics

This table reports average quarterly excess returns for portfolios sorted on analysts’ forecast dis-
persion, idiosyncratic volatility (IV), and distress risk (Def Prob). Dispersion is the standard deviation
of earnings forecasts divided by the absolute value of the mean forecast. IV is the standard deviation
of the residual from a Fama–French (1993) three-factor regression using daily returns from the month
prior to portfolio formation. The probability of default is based on the Campbell, Hilscher, and Szilagyi
(2008) measure. Portfolios are value weighted. The dispersion and IV portfolios are rebalanced monthly,
while the distress risk portfolio is rebalanced annually in July. The table reports t-stats in parentheses.
The sample period is July 1980 to June 2008 for dispersion and distress risk July 1965 to June 2008 for
idiosyncratic volatility.

Average Returns of Anomaly Portfolios

Dispersion Idiosyncratic Volatility Distress Risk
Portfolio Avg. Ret. (t-stat) Avg. Ret. (t-stat) Avg. Ret. (t-stat)

Low 3.04 (3.87) 1.42 (2.76) 2.48 (3.17)
2 1.69 (2.29) 1.44 (2.46) 1.95 (2.82)
3 1.39 (1.82) 1.55 (2.35) 1.92 (2.74)
4 1.93 (2.32) 1.84 (2.48) 1.79 (2.22)
5 1.44 (1.61) 1.81 (2.17) 1.87 (2.24)
6 2.19 (2.26) 1.98 (2.07) 1.50 (1.61)
7 1.48 (1.62) 1.32 (1.19) 0.85 (0.73)
8 1.92 (1.78) 0.66 (0.56) 0.13 (0.09)
9 0.86 (0.78) -0.27 (-0.20) 0.41 (0.23)
High 0.73 (0.60) -2.55 (-1.86) -0.72 (-0.36)

High-Low -2.31 (-2.45) -3.96 (-3.33) -3.20 (-2.03)
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Table VI: Relation between Dispersion, Idiosyncratic Volatility, and Distress
Risk

This table reports statistics on the relation between dispersion, idiosyncratic volatility (IV), and
distress risk (Default Probability). Dispersion is the standard deviation of earnings forecasts divided by
the absolute value of the mean forecast. IV is the standard deviation of the residual from a Fama–French
(1993) three-factor regression using daily returns from the month prior to portfolio formation. The
probability of default is based on the Campbell, Hilscher, and Szilagyi (2008) measure. Panel A reports
the correlations between dispersion, IV, and default probability. The reported correlations are time-series
averages of the monthly Spearman cross-sectional correlations between the three measures. Panel B shows
the average dispersion, IV, and default probability for firms appearing in decile portfolios sorted on each
of the three variables. The dispersion and IV portfolios are rebalanced monthly, while the distress risk
portfolio is rebalanced annually in July. The sample period is July 1981 to June 2008.

Panel A: Spearman Rank Correlation

Dispersion Idiosyncratic Volatility Default Probability
Dispersion 1.00 0.31 0.31
Idiosyncratic Volatility 1.00 0.47
Default Probability 1.00

Panel B: Average Characteristics of Firms in Portfolios

Portfolio
Characteristic Low 2 3 4 5 6 7 8 9 High

Dispersion Portfolios
Dispersion 0.00 0.02 0.02 0.03 0.04 0.06 0.08 0.12 0.23 3.78
Idiosyncratic Volatility 2.29 1.88 1.98 2.09 2.23 2.37 2.69 2.78 3.08 3.51
Default Probability 0.08 0.06 0.07 0.09 0.11 0.13 0.18 0.26 0.32 0.40

Idiosyncratic Volatility Portfolios
Dispersion 0.11 0.14 0.22 0.31 0.42 0.53 0.72 0.90 1.12 1.49
Idiosyncratic Volatility 0.69 1.24 1.61 1.98 2.38 2.84 3.40 4.17 5.42 9.89
Default Probability 0.11 0.05 0.07 0.10 0.13 0.20 0.33 0.58 1.09 3.29

Distress Risk Portfolios
Dispersion 0.18 0.17 0.19 0.26 0.40 0.42 0.62 0.98 1.47 1.75
Idiosyncratic Volatility 2.15 2.18 2.24 2.36 2.46 2.65 3.07 3.76 4.91 7.14
Default Probability 0.02 0.02 0.03 0.04 0.05 0.06 0.07 0.11 0.24 5.60
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Table VII: Long-Run Dividend Share and Share Ratio Estimates

This table reports the average draws of long-run dividend share, θ̄, and share ratio, θ̄/θt, for the
test portfolios. These statistics are reported for ten portfolios sorted on dispersion, idiosyncratic volatility,
and momentum. Long-run dividend share is estimated using a Markov chain Monte Carlo (MCMC)
technique with Metropolis–Hastings steps as discussed in Appendix B.1.1. We display the mean and
standard deviation of θ̄ and the time-series median of mean and standard deviation θ̄/θt draws from the
MCMC procedure. The sample period is July 1980 to June 2008 for dispersion and distress risk July 1965
to June 2008 for idiosyncratic volatility.

Portfolio θ̄ σ(θ̄) θ̄/θt σ(θ̄/θt)

Dispersion
Low 0.633 (0.094) 6.675 (0.986)
2 0.066 (0.042) 0.358 (0.226)
3 0.059 (0.039) 0.364 (0.244)
4 0.060 (0.038) 0.469 (0.298)
5 0.031 (0.023) 0.266 (0.196)
6 0.085 (0.046) 0.808 (0.435)
7 0.019 (0.014) 0.222 (0.170)
8 0.030 (0.021) 0.530 (0.379)
9 0.006 (0.005) 0.178 (0.141)
High 0.012 (0.008) 0.720 (0.502)

Idiosyncratic Volatility
Low 0.290 (0.015) 0.789 (0.041)
2 0.180 (0.013) 0.649 (0.047)
3 0.265 (0.015) 1.732 (0.097)
4 0.133 (0.011) 1.629 (0.137)
5 0.071 (0.008) 1.371 (0.160)
6 0.052 (0.007) 1.681 (0.234)
7 0.010 (0.003) 0.481 (0.137)
8 0.001 (0.001) 0.079 (0.054)
9 0.000 (0.000) 0.020 (0.016)
High 0.000 (0.000) 0.018 (0.014)

Distress Risk
Low 0.258 (0.016) 1.932 (0.119)
2 0.261 (0.016) 1.223 (0.077)
3 0.170 (0.014) 0.897 (0.071)
4 0.108 (0.012) 0.715 (0.076)
5 0.091 (0.011) 0.736 (0.085)
6 0.072 (0.010) 0.862 (0.118)
7 0.033 (0.006) 0.982 (0.195)
8 0.005 (0.002) 0.494 (0.218)
9 0.001 (0.001) 0.329 (0.201)
High 0.001 (0.000) 1.750 (0.371)
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Table VIII: Relation between Share Ratio and Average Return

This table reports the relations between average returns and share ratio. The table displays re-
sults for portfolios formed on dispersion, idiosyncratic volatility, and distress risk. The reported relations
are time-series average of the coefficients from cross-sectional regressions of excess returns on share
ratio. The portfolio share ratios are estimated using the Markov chain Monte Carlo (MCMC) technique
discussed in Appendix B.1.1. Standard errors are reported in parentheses and an ∗ (∗∗) denotes statistical
significance at the 5% (1%) level. The sample period is July 1948 to June 2008.

Portfolios λ0 λθ̄/θ R2

Dispersion 1.992∗ 0.215∗ 0.023
(0.834) (0.131)

Idiosyncratic Volatility 0.349 0.639∗∗ 0.222
(1.680) (0.270)

Distress Risk 1.466 0.051 0.053
(0.920) (0.297)

Table IX: Cross-Sectional Test of the Long-Run Risk Beta-Pricing Model

This table reports the results of cross-sectional tests of the CAPM and long-run risk factor model
among individual firms. The reported relations are estimated from equations (22) to (24) using a
hierarchical Bayesian regression. The innovations in Xt are estimated using a forward filtering–backward
sampling (FFBS) algorithm. The dispersion, IV, and default probability characteristics are measured at
the beginning of each period. Further discussion of the estimation technique appears in Appendix B.1.1.
Standard errors are reported in parentheses and an ∗ (∗∗) denotes statistical significance at the 5% (1%)
level. The sample period is July 1980 to June 2008.

Model λ0 λm λx λdisp λiv λdef R2

CAPM -0.373 2.291∗∗ 0.375
(0.481) (0.487)

LRR -0.053 2.185∗∗ 0.228 0.563
(0.429) (0.485) (0.182)

CAPM (w/ Char.) -0.658 2.515∗∗ -0.475 -0.522∗ -0.032 0.422
(0.610) (0.581) (0.320) (0.234) (0.294)

LRR (w/ Char.) -0.260 2.309∗∗ 0.274 -0.295 -0.362 0.023 0.582
(0.600) (0.627) (0.228) (0.325) (0.237) (0.281)
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Table X: Anomaly Portfolio Return Characteristics

This table reports the average dispersion, idiosyncratic volatility, default probability, and quarterly
excess return for portfolios sorted on dividend size (θ) in Panel A and realized dividend growth (which is
a proxy for θ̄/θ in Panel B. The sample period is July 1980 to June 2008 for dispersion and distress risk
July 1965 to June 2008 for idiosyncratic volatility and average returns. The return patterns are similar for
the July 1980 to June 2008 period.

Panel A: Dividend Size (θ) Portfolios

Portfolio Dispersion Idio. Vol. Def. Prob. Avg. Ret.

0 0.81 3.89 0.76 2.88
Low 0.32 2.72 0.10 3.77
2 0.29 2.43 0.07 3.18
3 0.23 2.25 0.07 3.06
4 0.23 2.09 0.06 2.92
5 0.15 1.95 0.06 2.79
6 0.15 1.83 0.05 2.71
7 0.15 1.71 0.04 2.40
8 0.12 1.59 0.06 2.31
9 0.13 1.46 0.04 2.08
High 0.10 1.30 0.04 1.61

Panel B: Dividend Growth (θ/θ Proxy) Portfolios

Portfolio Dispersion Idio. Vol. Def. Prob. Avg. Ret.

Cut 1.35 3.49 0.48 1.90
Low 0.66 2.37 0.11 1.76
2 0.27 1.97 0.05 2.46
3 0.21 1.89 0.05 2.44
4 0.15 1.74 0.05 2.44
5 0.10 1.66 0.04 2.34
6 0.08 1.67 0.05 2.45
7 0.07 1.71 0.04 2.61
8 0.08 1.79 0.04 2.65
9 0.12 1.93 0.05 3.09
High 0.11 2.16 0.05 3.46
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Table XI: Characteristics and Returns of Portfolios Sorted on θ and θ̄/θ

This table reports the average dispersion, idiosyncratic volatility, default probability, and quarterly
excess return for portfolios sorted on first on dividend size (θ) and then on realized dividend growth
(which is a proxy for θ̄/θ. The sample period is July 1980 to June 2008 for dispersion and distress risk
July 1965 to June 2008 for idiosyncratic volatility and average returns. The return patterns are similar for
the July 1980 to June 2008 period.

Panel A: Average Dispersion

Dividend Growth (θ̄/θ Proxy)
Low 2 3 4 High High-Low

Low 0.68 0.36 0.18 0.13 0.12 -0.56
2 0.56 0.20 0.13 0.10 0.15 -0.41

Dividend (θ) 3 0.38 0.17 0.07 0.07 0.10 -0.28
4 0.34 0.14 0.08 0.06 0.08 -0.26
High 0.24 0.10 0.06 0.05 0.09 -0.15

High-Low -0.44 -0.26 -0.12 -0.08 -0.03

Panel B: Average Idiosyncratic Volatility

Dividend Growth (θ̄/θ Proxy)
Low 2 3 4 High High-Low

Low 2.71 2.52 2.39 2.38 2.54 -0.17
2 2.27 2.10 2.04 2.07 2.24 -0.03

Dividend (θ) 3 2.00 1.83 1.77 1.80 1.99 -0.01
4 1.80 1.58 1.52 1.58 1.78 -0.02
High 1.50 1.35 1.30 1.36 1.48 -0.02

High-Low -1.20 -1.17 -1.10 -1.03 -1.06

Panel C: Average Default Probability

Dividend Growth (θ̄/θ Proxy)
Low 2 3 4 High High-Low

Low 0.12 0.07 0.06 0.06 0.06 -0.06
2 0.08 0.05 0.08 0.05 0.05 -0.03

Dividend (θ) 3 0.07 0.05 0.04 0.04 0.05 -0.02
4 0.06 0.04 0.04 0.04 0.04 -0.02
High 0.05 0.04 0.04 0.04 0.04 -0.01

High-Low -0.07 -0.03 -0.02 -0.02 -0.02

Panel D: Average Excess Return

Dividend Growth (θ̄/θ Proxy)
Low 2 3 4 High High-Low

Low 2.56 3.45 3.18 3.47 3.83 1.27
2 2.28 2.96 2.75 3.05 3.17 0.89

Dividend (θ) 3 2.25 2.28 2.71 2.76 3.00 0.75
4 2.15 1.90 2.32 2.51 2.63 0.48
High 2.10 1.83 1.81 1.76 1.59 -0.51

High-Low -0.46 -1.62 -1.37 -1.71 -2.24
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Figure 1: Cash Flow Duration and Expected Returns
This figure shows the expected quarterly excess return of an asset as a function of its cash flow
duration. The asset considered pays a non-negative portion of the aggregate dividend at all times
t. The dotted lines show the 90% confidence band for expected excess returns given the posterior
distribution of aggregate parameters.

51



0 1 2 3 4 5

0.25

0.50

0.75

1.00

1.25

1.50

E
xp

ec
te
d
E
xc
es
s
R
et
u
rn

(%
/
qu

a
rt
er
)

Share Ratio (θ̄/θ)
0 1 2 3 4 5

0.50

0.75

1.00

1.25

E
co
n
om

ic
G
ro
w
th

B
et
a
(β

X
)

Share Ratio (θ̄/θ)

Figure 2: Expected Excess Returns and Economic Growth Betas for Unlevered Firms
This figure shows expected excess returns and economic growth betas as a function of firm share
ratio for an unlevered firm. The first figure graphs the expected monthly excess return against
share ratio. The expected excess return of firm i is given by equation (14). The second figure
plots the firm’s beta relative to an economic growth hedge portfolio, given by equation (16), as
a function of share ratio. The dotted lines show the 90% confidence bands given the posterior
distribution of aggregate and portfolio parameters. See Appendix B for details on aggregate and
portfolio parameter estimation.
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Figure 3: Expected Excess Returns and Economic Growth Betas for Levered Firms
This figure shows expected excess returns and economic growth betas as a function of firm share
ratio for a levered firm. The firm is assumed to have a market debt ratio of 0.5 with one year to
debt maturity. Following the Merton (1974) framework, a firm is assumed to default if its firm
value at debt maturity is less than the face value of its debt. The first figure graphs the expected
monthly excess return against share ratio. The second figure plots the firm’s beta relative to an
economic growth hedge portfolio as a function of share ratio. The dotted lines show the 90%
confidence bands of simulated values from 5,000 iterations of the simulation, where the aggregate
parameters in each iteration are drawn from their posterior distribution. See Appendix B for
details on aggregate and portfolio parameter estimation and the simulation procedure.

53



10
−4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

E
x
p
ec
te
d
E
x
ce
ss

R
et
u
rn

(%
/q

u
a
rt
er
)

Dispersion

(A) Dispersion

 1 10 50

0.8

1.0

1.2

1.4

1.6

1.8

2.0

E
x
p
ec
te
d
E
xc
es
s
R
et
u
rn

(%
/
qu

a
rt
er
)

IV

(B) Idiosyncratic Volatility

0.01 0.10 1.00 10.00

0.8

1.0

1.2

1.4

1.6

1.8

2.0

E
x
p
ec
te
d
E
xc
es
s
R
et
u
rn

(%
/
qu

a
rt
er
)

Default Probability

(C) Credit Risk

Figure 4: Expected Returns and Firm Characteristics
This figure plots the cross-sectional relations between expected excess return and each of disper-
sion, idiosyncratic volatility (IV), and credit risk. The plots are based on a cross section of 250
simulated firms. For each firm, dispersion and IV are calculated based on equations (25) and
(26), respectively. Credit risk is estimated from the percentage of simulated draws in which the
firm defaults. The firm is assumed to have a market debt ratio of 0.5 with one year to debt
maturity. Following the Merton (1974) framework, a firm is assumed to default if its value at
debt maturity is less than the face value of its debt. See Appendix B.2 for full details on the
simulation procedure.
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Appendix

A Model Appendix

A.1 Aggregate Asset Pricing

Expanding on Proposition 1, we have the following aggregate asset pricing results.

• The value function is given by

J(Ct, Xt) =
C1−γ
t

1− γ
exp

(
λ(1− γ)

κ+ β
Xt +

1− γ

β

[
µC − 1

2
γσ2

C +
λ2(1− γ)σ2

x

2(κ+ β)2

])
. (A.1)

• The pricing kernel is given by

dΛ

Λ
= −rft dt− γσCdWC − (γ − 1)λ

κ+ β
σXdWX , (A.2)

rft = β + µC + λXt − γσ2
C , (A.3)

where rft is the risk-free rate.

• The price-dividend ratio, from equation (6), is

Pt
Dt

= G(Xt) =

∫ ∞

t

S(Xt, τ)ds [τ = s− t],

where

S(Xt, τ) = exp(P1(τ)Xt + P2(τ)), (A.4)
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with P1 and P2 given by

P1(τ) =
1− λ

κ

(
1− e−κτ

)
(A.5)

P2(τ) = aτ + b(e−κτ − 1) + c(1− e−2κτ ) (A.6)

a =

(
µD − µC + γσ2

C − β +
1− λ

κ
σ2
X

(
1− λ

2κ
− (γ − 1)λ

κ+ β

))
(A.7)

b =
(1− λ)σ2

X

κ2

(
1− λ

κ
− (γ − 1)λ

κ+ β

)
(A.8)

c =
(1− λ)2σ2

X

4κ3
. (A.9)

Proof of Theorem 1:

Proof. Consider an asset that pays a single cash flow equal to the aggregate dividend at

time T , DT . The value of this asset at time t is given by

pt(τ,Dt, Xt) = Et

[
ΛT
Λt
DT

]
= DtS(Xt, τ) [τ = T − t],

where the second step includes the equivalence Et[ΛTDT ] = ΛtDtS(Xt, τ) where S(Xt, τ)

is defined above. Then the risk premium on this asset is

− Cov

(
dΛt
Λt

,
dpt
pt

)
=

(γ − 1)λ

κ+ β
σ2
X

SX(Xt, τ)

S(Xt, τ)

=
(γ − 1)λ

κ+ β
σ2
X

S(Xt, τ)P1(τ)

S(Xt, τ)

=
(γ − 1)λ

κ+ β
σ2
X

1− λ

κ
(1− e−κτ ), (A.10)

which is increasing in τ since γ > 1, λ < 1, κ > 0, and β > 0. The asset pays a single cash

flow with duration τ . The duration and expected return of a portfolio of cash flows are
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value-weighted averages of the duration and expected returns of its cash flows, respectively.

Therefore, the positive duration–expected return relation generalizes to any portfolio whose

payoffs are non-negative fractions of the aggregate dividend.

A.2 Cross Section of Dividends

Proof of Theorem 2:

Proof. The sum of two dividend shares θpt = θit + θjt follows a WF process. Applying Itô’s

Lemma with ρt(dWθi , dWθj) = −
√

θitθ
j
t

(1−θit)(1−θ
j
t )

and defining θ̄p ≡ θ̄i + θ̄j,

dθpt = dθit + dθjt

= α(θ̄i + θ̄j − θit − θjt )dt+ δ
√

(1− θit)θ
i
tdWθi + δ

√
(1− θjt )θ

j
tdWθj

= α(θ̄p − θpt )dt

+δ

√√√√(1− θit)θ
i
t + (1− θjt )θ

j
t − 2

√
(1− θit)θ

i
t(1− θjt )θ

j
t

θitθ
j
t

(1− θit)(1− θjt )
dWθp

= α(θ̄p − θpt )dt+ δ
√
(1− θpt )θ

p
t dWθp . (A.11)

Additional Aggregation Results:

We now show that the portfolio share ratio is given by equation (11) and that the cross

section of firms aggregates properly. From Theorem 2, the dividend share of a portfolio p∗

holding the full value of all firms in P follows the WF process,

dθp
∗

t = α(θ̄p
∗ − θp

∗

t )dt+ δ

√
(1− θp

∗

t )θp
∗

t dWθp∗ , (A.12)

where θ̄p
∗
=
∑

i∈P θ̄
i and θp

∗

t =
∑

i∈P θ
i
t. Then consider a portfolio p which holds the
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proportion of firm value ω of each firm in P . By Itô’s lemma, the process for the portfolio’s

dividend share is

dθpt = α(θ̄p − θpt )dt+ δ
√
(ω − θpt )θ

p
t dWθp , (A.13)

where θ̄p =
∑

i∈P ωθ̄
i and θpt =

∑
i∈P ωθ

i
t. Asset pricing results must be equivalent for

ω < 1 and ω = 1 to prevent the existence of arbitrage opportunities. Equation (11) is

derived by

θ̄p

θpt
=

∑
i∈P ωθ̄

i∑
i∈P ωθ

i
t

=
∑
i∈P

θit∑
i∈P θ

i
t

θ̄i

θit
. (A.14)

For the aggregation result, let all N firms be included in P and ω = 1 so the portfo-

lio represents ownership of all assets in the economy. Then
∑

i∈P θ
i
0 = 1 at time 0 and

d(
∑

i∈P θ
i
t) = 0 by equation (A.13), so 1 =

∑
i∈P θ

i
t =

∑N
i=1 θ

i
t for all t and Dt =

∑N
i=1D

i
t.

A.3 Cross-Sectional Asset Pricing

Proof of Theorem 3:

Proof. The value of a firm is the expected discounted value of firm dividends,

P i
t = Et

∫ ∞

t

Λs
Λt
Di
sds

= Et

∫ ∞

t

Λs
Λt
Dsθ

i
sds. (A.15)

In order to value future dividends, we need to compute Et[θ
i
s], which has a solution

Et[θ
i
s] = θite

−ατ + θ̄i(1− e−ατ ). (A.16)

This expectation is simply a weighted average of the current dividend share θit and the long-

run dividend share θ̄i, with Et[θ
i
s] = θit at τ = 0 and limτ→∞Et[θ

i
s] = θ̄i as our expectation

of θit converges to the long-run dividend share.
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The price of security i is

P i
t =

1

Λt

∫ ∞

t

Et[Λsθ
i
sDs]ds

=
1

Λt

∫ ∞

t

Et[ΛsDs]Et[θ
i
s]ds [independence]

=
1

Λt

∫ ∞

t

ΛtDtS(Xt, τ)[θ
i
te

−ατ + θ̄i(1− e−ατ )]ds [τ = s− t], (A.17)

where S(Xt, τ) is defined above. Dividing both sides by Di
t = θitDt,

P i
t

Di
t

≡ Gi(Xt, θ
i
t; θ̄

i, α) =

∫ ∞

t

S(Xt, τ)

[
e−ατ +

θ̄i

θit
(1− e−ατ )

]
ds. (A.18)

Firm i’s price-dividend ratio is increasing in share ratio given α > 0 since (1 − e−ατ ) > 0

and S(Xt, τ) > 0 for all Xt and τ .

Individual firm excess return obeys

dRi
t = µitdt+ σDdWD +

Gi
X

Gi
σXdWX + δ

√
1− θit
θit

(
1 +

θitG
i
θ

Gi

)
dWθi , (A.19)

where µit is the expected excess return given by

µit = −Cov
(
dP i

P i
,
dΛ

Λ

)
=

λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi
. (A.20)

We now establish conditions under which µit is increasing in share ratio. First, define share

ratio sit =
θ̄i

θit
. Assuming γ > 1, µit is increasing in share ratio if

Gi
X

Gi is increasing in share
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ratio, where

Gi
X = sit

∫ ∞

t

S(Xt, τ)P1(τ)(1− e−ατ )ds+

∫ ∞

t

S(Xt, τ)P1(τ)e
−ατds (A.21)

Gi = sit

∫ ∞

t

S(Xt, τ)(1− e−ατ )ds+

∫ ∞

t

S(Xt, τ)e
−ατds. (A.22)

Since Gi and Gi
X are both linear in sit and substituting in P1(τ) =

1−λ
κ

(1− e−κτ ), the sign

of
∂(Gi

X/G
i)

∂sit
depends on

sgn(c) = sgn

(∫ ∞

t

S(Xt, τ)ds

∫ ∞

t

S(Xt, τ)e
−(α+κ)τds−

∫ ∞

t

S(Xt, τ)e
−ατds

∫ ∞

t

S(Xt, τ)e
−κτds

)
.

(A.23)

In order to show sgn(c) > 0, we need to show that

∫ ∞

t

S(Xt, τ)ds

∫ ∞

t

S(Xt, τ)e
−(α+κ)τds >

∫ ∞

t

S(Xt, τ)e
−ατds

∫ ∞

t

S(Xt, τ)e
−κτds,

(A.24)

which follows by Chebyshev’s algebraic inequality since e−ατ and e−κτ are monotonic func-

tions of τ (Mitrinović, Pečarić, and Fink (1993, p. 239)).

Finally, given the process for returns in equation (A.19), the instantaneous variance of

firm returns in equation (15) follows from the assumption of zero correlation between the

dWX , dWD, and dWθi processes.

From equation (16), we have the beta-pricing relation, µit = βitµt, where β
i
t

(
Xt,

θ̄i

θit

)
is

firm i’s beta on an economic growth hedge portfolio with expected return µt. The economic

growth hedge portfolio is constructed to have returns that follow

dRt = µtdt+
GX

G
σXdWX , (A.25)
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where µt is defined in Proposition 1. Firm i’s beta is

βit

(
Xt,

θ̄i

θit

)
=

Cov(dRi
t, dRt)

V ar(dRt)

=
σ2
X
Gi

X

Gi
GX

G

σ2
X

(
GX

G

)2
=

Gi
X

Gi

G

GX

. (A.26)

Then substituting
Gi

X

Gi = βit
GX

G
into the equation for µit gives

µit =
λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi

= βitµt. (A.27)

A.4 Dispersion and Idiosyncratic Volatility

A negative share ratio–dispersion relation exists when θit < 1/2. Since dispersion is positive,

the derivatives of both dispersion and dispersion squared with respect to share ratio will

have the same sign. We have

∂(Dispersionit)
2

∂sit
=
∂(D2

t θ̄
i2(sit)

−2σ2
D +D2

t δ
2θ̄i(sit)

−1(1− θ̄i(sit)
−1))

∂sit
(A.28)

= D2
t θ̄
i(sit)

−2(2θ̄i(δ2 − σ2
D)(s

i
t)

−1 − δ2), (A.29)

which is negative under the condition

2θit(δ
2 − σ2

D)− δ2 < 0. (A.30)

A sufficient condition for the negative share ratio–dispersion relation is therefore θit < 1/2.

From a technical perspective, IV decreases in share ratio under the sufficient condition
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in Theorem 4.

Proof. IV of asset i is given by

IV i
t = δ

√(
1

θit
− 1

)(
1 +

θitG
i
θ

Gi

)

= δ

√(
1

θit
− 1

) ∫∞
t
S(Xt, τ)e

−ατds

G+
∫∞
t
S(Xt, τ)

(
θ̄i

θit
− 1
)
(1− eατ )ds


= δ

(∫ ∞

t

S(Xt, τ)e
ατds

) √
sit
θ̄i
− 1

G+ (sit − 1)
∫∞
t
S(Xt, τ)(1− e−ατ )ds

. (A.31)

Notice the change of variable θ̄i

θit
= sit which implies that 1

θit
=

sit
θ̄i
. By construction,

sit
θ̄i
> 1.

The sign of the derivative
∂IV i

t

∂sit
depends on whether the quantity

c(rit) =

√
sit
θ̄i
− 1

G+ (sit − 1)
∫∞
t
S(Xt, τ)(1− e−ατ )ds

(A.32)

is increasing or decreasing in sit. By taking the derivative of c(sit) with respect to sit,

sgn
(
∂IV i

t

∂sit

)
is determined by the sign of the quantity

c̄ = (2θ̄i − sit)

∫ ∞

t

S(Xt, τ)(1− e−ατ )ds+

∫ ∞

t

S(Xt, τ)e
−ατds. (A.33)

Rewrite c̄ as

c̄ = (2θ̄i − sit)

∫ ∞

t

S(Xt, τ)ds+ (sit − 2θ̄i + 1)

∫ ∞

t

S(Xt, τ)e
−ατds (A.34)

≤ (2θ̄i − sit)|S(Xt, τ)|1 +
(sit − 2θ̄i + 1)√

2α
|S(Xt, τ)|2, (A.35)

where the last inequality is due to the Cauchy–Schwarz inequality and | · |i is the i-th norm.

The success of equation (A.35) is to separate α from inside the integral, thus disentangling
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any non-linear dependence from other variables inside the integral. Now, we can enforce a

condition for the IV result in the (θ̄i, α)-plane that is independent from the other variables

in the system. Since, S(Xt, τ) is positive ∀τ , the first norm is much greater than the second

norm because the cross-terms are all positive. Thus, for c̄ < 0 in (A.35), we need the

following parameter restriction to hold:

(sit − 2θ̄i)(
√
2αM − 1) > 1, (A.36)

where M = |S(Xt,τ)|1
|S(Xt,τ)|2 >> 1 for reasonable parameter values that we consider. Simulations

show that the bound c̄ < 0 is easily achieved for a wide variety of parameters.

B Estimation and Simulation Appendix

B.1 Estimation

We estimate the aggregate parameters of the Euler approximations of equations (3), (4),

and (5) using a Bayesian approach. We refer the reader to Hore (2010) for estimation details

and discussion of priors. Below, we describe the estimation of cross-sectional parameters

and the methodology for the cross-sectional tests.

B.1.1 Portfolio Parameter Estimation

For each of the three sets of decile portfolios, we estimate the parameter θ̄i for each port-

folio and the parameters α and δ using a Bayesian MCMC approach. Using the Euler

approximation of equation (8) along with the instantaneous correlation in equation (9), we

have a system of N equations with one equation for each portfolio i of the form,

θit+1 = θit + α(θ̄i − θit) + δϵit+1, i = 1, ..., N, ϵt+1 ∼ N(0,Σt), (B.1)
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where

Σt =



θ1t (1− θ1t ) · · · −θ1t θit · · · −θ1t θNt
...

. . .
...

−θitθ1t · · · θit(1− θit) · · · −θitθNt
...

. . .
...

−θNt θ1t · · · −θNt θit · · · θNt (1− θNt )


. (B.2)

Further, we have the parameter restrictions that θ̄j > 0 for all portfolios j, α > 0, δ > 0,

and
∑n

j=1 θ̄
j = 1. Note that the full variance-covariance matrix Σ is not invertible. To see

this, consider the variance of θNt+1 given {θit+1}N−1
i=1 , which is

δ2θNt (1− θNt )− δ2Σ(N,1:N−1)Σ
−1
(1:N−1,1:N−1)Σ(1:N−1,N) = 0, (B.3)

while the mean of θNt+1 is 1 −
∑N−1

i=1 θit+1. Therefore, the variance-covariance matrix Σ

automatically enforces the constraint
∑N

j=1 θ̄
j = 1. In practice, a combination of the

variance-covariance matrix of the first N−1 dividend shares, Σ(1:N−1,1:N−1), combined with

the constraint
∑N

j=1 θ̄
j = 1 are used to estimate the system.

The parameters in equation (B.1) do not have a convenient posterior distribution, so we

employ a Metropolis–Hastings algorithm to draw from the posterior distribution. Below,

we outline the MCMC chain. Defining the vector of parameters Ω = [θ̄, α, δ], the draw of

Ω in iteration m of the MCMC chain is as follows:

1. Draw a vector θ̂ ∼ N[0,∞)(θ̄
(m−1), A), where A is a diagonal matrix scaled to provide for

sufficient mixing and the multivariate normal distribution is truncated at zero in all

N dimensions because of the restrictions θ̄j > 0 for j = 1, ..., N . The candidate vector

is then normalized to sum to one, θ̄∗ = θ̂

θ̂′ι
, to satisfy the restriction

∑N
j=1 θ̄

j = 1.
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Finally, Ω∗ = [θ̄∗, α(m−1), δ(m−1)] is accepted with probability

min

{
p(Ω∗)/q(Ω∗|Ω(m−1))

p(Ω(m−1))/q(Ω(m−1)|Ω∗)
, 1

}
, (B.4)

where

p(Ω) ∝
T∏
t=1

exp

(
−
(
θ−Nt+1 − (1− α)θ−Nt − αθ̄−N

)′
Σ−1
t,−N

(
θ−Nt+1 − (1− α)θ−Nt − αθ̄−N

)
2δ2

)
,

(B.5)

is the kernel of a multivariate normal distribution, θ−Nt+1 and θ̄
−N are vectors of dividend

shares and long-run means of dividend shares of the first N − 1 firms, Σ−N is the

(N − 1 × N − 1) block of the variance-covariance matrix defined in equation (B.2)

formed by dropping the Nth row and column, and q(Ωa|Ωb) can be replaced by the

probability that all elements of a draw θ̄b ∼ N(θ̄a, A) are greater than zero.18 If the

transition density was not truncated, this step would be a random-walk Metropolis–

Hastings step and the q(Ω∗|Ω(m−1)) and q(Ω(m−1)|Ω∗) terms would cancel. Scaling

the likelihoods of Ω∗ and Ω(m−1) by the probabilities of positive draws adjusts for

the differences in transition probabilities arising from the truncation. Transition

probabilities are unaffected by the rescaling of θ̂ to θ̄∗ since A is diagonal. If the draw

θ̄∗ is accepted then θ̄(m) = θ̄∗. Otherwise, θ̄(m) = θ̄(m−1).

2. Draw a candidate α∗ ∼ N[0,∞)(α
(m−1), σα). The normal distribution is truncated

at zero because of the restriction α > 0. Then the draw Ω∗ = [θ̄(m), α∗, δ(m−1)] is

accepted with probability

min

{
p(Ω∗)/q(Ω∗|Ω(m−1))

p(Ω(m−1))/q(Ω(m−1)|Ω∗)
, 1

}
, (B.6)

18Note that the constants multiplying the kernels to arrive at likelihoods are the same for p(Ω∗) and
p(Ω(m−1)) so they can safely be ignored.
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where

p(Ω) ∝
T∏
t=1

exp

(
−
(
θ−Nt+1 − (1− α)θ−Nt − αθ̄−N)

)′
Σ−1
t,−N

(
θ−Nt+1 − (1− α)θ−Nt − αθ̄−N)

)
2δ2

)
,

(B.7)

and q(Ωa|Ωb) can be replaced by the probability that a draw αb ∼ N(αa, σα) is greater

than zero. If the draw α∗ is accepted then α(m) = α∗, else α(m) = α(m−1).

3. Draw a candidate δ∗ ∼ N[0,∞)(δ
(m−1), σδ). Then the draw Ω∗ = [θ̄(m), α(m), δ∗] is

accepted with probability

min

{
p(Ω∗)/q(Ω∗|Ω(m−1))

p(Ω(m−1))/q(Ω(m−1)|Ω∗)
, 1

}
, (B.8)

where

p(Ω) ∝
T∏
t=1

1

δN−1
exp

(
−
(
θ−Nt+1 − (1− α)θ−Nt − αθ̄−N

)′
Σ−1
t,−N

(
θ−Nt+1 − (1− α)θ−Nt − αθ̄−N)

)
2δ2

)
,

(B.9)

and q(Ωa|Ωb) can be replaced by the probability that a draw δb ∼ N(δa, σδ) is greater

than zero. If the draw δ∗ is accepted then δ(m) = δ∗, else δ(m) = δ(m−1).

We draw 250,000 parameter vectors from the posterior distribution and discard the first

50,000 as a burn-in period. Due to the relatively strong autocorrelation in draws that can

arise when using a Metropolis–Hastings algorithm, we use every fortieth draw from the

posterior as the 5,000 draws that are used in the simulation below. The resulting draws

are nearly serially uncorrelated.

B.1.2 Cross-Sectional Tests

We perform asset-pricing tests using an approach similar to Fama–MacBeth. Our Bayesian

hierarchical regressions estimate the system of equations simultaneously, mitigating mea-
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surement error biases (see Davies (2011) and Cederburg (2011) for additional details). In

the tests, we examine 20 three-year periods y using data from quarterly sub-periods t within

each period. The MCMC steps for the tests in Section 2.3 follow.

1. Draw βiy|σ2
i,y, {∆Xt,y}Tt=1, λy, σ

2
y , β,Vβ ∼ N(β

i

y,V
i

β,y) for i = 1, ..., Ny and y = 1, ..., Y ,

where Ny is the number of assets in period y, βiy = [αiy βim,y βiX,y]
′,

β
i

y = V
i

β,y

(
V−1
β β + σ−2

i,yZ
′
1,yR

i
y + σ−2

y Z ′
2,y(R

i

y − λ0,y)
)
, (B.10)

V
i

β,y =
(
V−1
β + σ−2

i,yZ
′
1,yZ1,y + σ−2

y Z ′
2,yZ2,y

)−1
, (B.11)

Z1,y =
[
ιT {Rm

m,t,y}Tt=1 {∆Xt,y}Tt=1

]
, and Z2,y = [0 λm,y λX,y]. We set the prior

parameters of βiy to β = [0 1 0]′ and Vβ = 100I to specify proper but diffuse priors.

2. Draw σ2
i,y|βiy, {∆Xt,y}Tt=1, ν, s

2 ∼ Inverse Gamma( s
2

2
, ν
2
) for i = 1, ..., Ny and y =

1, ..., Y , where ν = ν + T , s2 = νs2 + s2, and

s2 =
T∑
t=1

(
Ri
t,y − αiy − βim,yR

m
t,y − βiX,y∆Xt,y

)2
. (B.12)

We set ν = 4 and s2 equal to the sample variance of firm i’s returns in period y.

3. Draw λy|{βiy}
Ny

i=1, σ
2
y , λ,Vλ ∼ N(λ̂y, V̂λy) for y = 1, ..., Y , where

λ̂y = V̂λy(V
−1
λ λ+ σ−2

y Z ′
yRy), (B.13)

V̂λy = (V−1
λ + σ−2

y Z ′
yZy)

−1, (B.14)

λy = [λ0,y λm,y λX,y]
′, and Zy =

[
ιNy {βim,y}

Ny

i=1 {βiX,y}
Ny

i=1

]
.

4. Draw σ2
y|λy, {βiy}

Ny

i=1, νλ, s
2
λ ∼ Inverse Gamma(

s2λ
2
, νλ

2
) for y = 1, ..., Y , where νλ =

νλ +Ny, s
2
λ = νλs

2
λ + s2λ, and s

2
λ =

∑Ny

i=1

(
R
i

y − λ0,y − λm,yβ
i
m,y − λX,yβ

i
X,y

)2
. We set
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νλ = 4 and s2λ to the variance of errors in a period-y regression of average returns on

OLS betas.

5. Draw Vλ|λ, {λy}Yy=1, g, G ∼ Inverse Wishart(Y +g,
∑Y

y=1(λy−λ)(λy−λ)′+G), where

g = 6 and G = g


0.52 0 0

0 0.52 0

0 0 0.22

.
6. Draw λ|{λy}Yy=1,Vλ, V , λ ∼ N(λ̃, Ṽλ), where

λ̃ = Ṽλ

(
(Vλ/Y )−1

Y∑
y=1

λy
Y

+ V −1λ

)
, (B.15)

Ṽλ =
(
(Vλ/Y )−1 + V −1

)−1
, (B.16)

V = 100I, and λ = [0 0 0]′.

The tests in Section 2.2 follow a similar procedure. The first two steps, concentrating on

drawing firm betas, are omitted. In addition, the betas in steps three and four are replaced

by firm share ratio and the λ parameters are vectors with two, rather than three, elements.

The remaining steps follow as in the previous case.

B.2 Simulation

In each iteration of the simulation, we use a draw from the posterior distributions of the

aggregate and portfolio parameters. We have closed-form solutions for several quantities in

the unlevered case, such as firm value, expected returns, betas, dispersion, and IV. For the

levered case we use simulations to estimate expected returns, betas, and the probability of

bankruptcy. We run the simulation for 5,000 iterations.

We work within the Merton (1974) framework, where firms default if firm value at
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debt maturity is less than the debt face value. In each iteration, we simulate one year

of Dt, Xt, Λt, and θit from the Euler approximations of equations (3), (4), (5), and (8),

respectively, using 4,000 subperiods during the year while simulating the diffusions. Using

these simulated time series, we calculate the end-of-year firm value,

P i
T = DT θ

i
T

∫ ∞

T

S(XT , τ)

[
e−ατ +

θ̄i

θit
(1− e−ατ )

]
ds [τ = s− t], (B.17)

using numerical integration. We estimate bankruptcy probabilities by comparing firm value,

P i
T , with the face value of debt, B. The proportion of iterations in which B > P i

T provides

a proxy for default probability.

Expected returns on levered equity is estimated by calculating the average return to

levered equity across iterations. The (one-year) return from time t to time T in each

iteration is

Ri
T =

V i
T +

∫ T
t
Dsθ

i
sds

V i
t

, (B.18)

with V i
t representing the value of levered equity and

∫ T
t
Dsθ

i
sds providing the cumulative

firm dividend paid over the period. Given the series of Dt, Xt, Λt, and θ
i
t simulated above

for this iteration,

V i
T = max

{
P i
T −B, 0

}
, (B.19)

which can be explicitly calculated and
∫ T
t
Dsθ

i
sds is estimated using the discrete approxi-

mation 1
4000

∑4000
s=1 Ds/4000θ

i
s/4000. Finally, the value of levered equity at time t, V i

t , must be

estimated. Within each iteration in the simulation, we run a second loop for 500 iterations

to estimate V i
t . In each subiteration, we simulate paths for Dt, Xt, Λt, and θit using the

same posterior draws of aggregate and portfolio parameters as in the main iteration. The
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estimate for V i
t is the average across the 500 subiterations of

V i
t =

∫ T

t

Dsθ
i
sΛsds+ ΛT max

{
P i
T −B, 0

}
, (B.20)

where the integral is again estimated using a discrete approximation. The expected levered

return is estimated using these quantities. In the last step, we estimate the levered equity

beta by dividing the estimated expected levered return by the expected return on the

economic growth hedge portfolio.

To examine the cross-sectional relation between expected return and dispersion, IV,

and credit risk in Figure 4, we first develop a cross section of 250 firms. For each firm, we

draw a random number from a χ2 distribution with two degrees of freedom, then scale this

number by the sum of the 250 random draws to create the firm’s long-run dividend share

θ̄i. This procedure creates a cross section with more small firms than large firms while

ensuring proper aggregation of the cross section. Each firm’s dividend share at time 0, θi0,

is initially set to its long-run dividend share before simulating each dividend share process

for a period of 100 years. This procedure creates a cross section of firms which is close

to the steady-state distribution in terms of dividend share θit and share ratio θ̄i/θit, with

minimal dependence on our initial assumptions about θi0. We then calculate dispersion, IV,

and credit risk as discussed above.
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