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Abstract

This paper presents a structural model of aggregate return characteristics based on a one-
channel Bansal and Yaron (2004) economy under recursive preferences. The predictability
result rests on an endogenously determined price-dividend ratio that is not exponentially
affine which implies time variation and predictability in equity premia. This result is
new within the context of a one-channel Bansal and Yaron (2004) economy. Furthermore,
the predictability coefficient is stochastic which provides theoretical foundations for recent
works in predictability like Dangl and Halling (2011). In longer horizon, the predictabil-
ity relationship is highly volatile making it difficult to make inference about long-horizon
predictability.



Introduction

This paper investigates structural return predictability within a one-channel long-run risk

framework of Bansal and Yaron (2004). Starting from simple joint dynamics of aggregate

consumption and dividend growth, where the expected growth rates of both share a common

stochastic trend, I find that equity premium is time-varying. This finding is significant

because Bansal and Yaron (2004) does not have time-varying equity premium in their one-

channel economy. A natural consequence of this is time-variation in the coefficient of return

predictability. In my model, dividend yield and the coefficient of return predictability are

inversely related - a decrease in dividend yield corresponds to a rapid increase in the return

predicting coefficient which increases equity premium. Furthermore, the setting is tractable

enough to solve for the long-horizon regression predictability coefficient in semi-closed form.

The time-series of long-horizon predictability coefficients show significant variation in US

data. This time-variation leads to high variance in return predictability, especially over

longer horizon, making long-horizon predictability of returns extremely unreliable.

The theory developed here makes two potentially interesting points. First, it finds

time-series implications in equity premium in the Bansal and Yaron (2004) one channel

economy. The reason that Bansal and Yaron (2004) does not find time-variation in expected

returns in their one-channel economy is because they posit price-dividend (PD) ratio to

be exponentially affine. Thus, the volatility of PD ratio is a constant, and, since the

one-channel economy has constant volatility in dividend and consumption growth, equity

premium is constant and there is no dynamic return predictability. In their work, the

dual channel economy with stochastic volatility of the growth rate of consumption and

dividend creates time-variation in the volatility of the pricing kernel which gives rise to

time-varying risk-premia and predictability. In this paper, I start with Duffie-Epstein
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preferences with elasticity of intertemporal substitution equal to unity, which allows me to

solve for the Hamilton-Jacobi-Bellman equation of the representative agent in closed form.

Subsequently, this gives me a closed form expression of the pricing kernel which allows me

to get an analytical expression for the PD ratio that is no longer exponentially affine. The

non-linearity in the log PD ratio creates time-varying volatility in returns, which gives rise

to time-varying risk-premia and predictability. The non-linearity in the PD ratio implies

that the quantity of risk is time-varying. In response to a good expected dividend growth

shock, the agent buys more of the asset that pays aggregate dividends which increases

the quantity of risk that the agent bears. The opposite happens in response to a bad

shock. Furthermore, in the Appendix I relaxed the assumption of unit EIS and found that

the above dynamics of PD ratio is consistent with EIS greater than unity. Additionally,

equity-premium is positive and pro-cyclical as long as risk-aversion is greater than the

inverse of EIS, i.e. as long as the agent has preference for early resolution of uncertainty.

The economic effect of this non-linearity in the PD ratio manifests in return predictability,

which is the second major point in the paper.

Given the closed form solution of PD ratio, I can directly solve for the long-horizon

return predictability coefficient in a semi-closed form. This coefficient is time-varying and

reflects at any time t, the agent’s expectation of price and dividend growth over a par-

ticular horizon. The time-variation in predictability coefficients is yet unexplored in the

equilibrium literature although it has gained significant attention in the empirical works of

Lettau and Van Nieuwerburgh (2008) and Dangl and Holling (2011). These recent works

on predictability show substantial uncertainty in estimating the predictability coefficient

and Dangl and Holling (2011) address that by modelling the coefficient in a state-space

framework. The time-varying coefficient significantly helps out-of-sample forecasts, and in-
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vestors armed with such models outperform investors with constant coefficient models. My

model provides theoretical foundation for time-varying predictability coefficients. An im-

mediate conclusion from my model is that OLS regressions for predictability can be deeply

misspecified and the parameter uncertainty that these papers encounter is precisely due to

the time-variation in the predictability coefficient derived here.

This paper rests on the non-linearity in the log PD ratio. Is the level of non-linearity

in the log PD ratio significant? Let’s assume that it is not very significant. Therefore,

the volatility of PD ratio should be a constant1, and since the volatility of the pricing

kernel is constant, expected return should also be constant across different realizations of

the latent growth rate. However, the qualitative and quantitative properties of the model

are quite different. The top panel of Figure 3 shows that changes in equity premium across

different states of the latent growth rate is quite significant, thus confirming the economic

siginificance of the non-linearity.

Long-horizon predictability has received a lot of attention in the empirical literature

since the early studies of Shiller (1981), Rozeff (1984), Campbell and Shiller (1988), Fama

and French (1988), among others. Fama and French (1988) were the first to show long-

horizon predictability reporting coefficients and R2-s that increase with horizon. Since

then, others have cast doubt on long-horizon predictability. Stambaugh (1999) finds severe

biases in small sample estimators. Although he doesn’t look at long-horizon regressions, his

criticism applies to long-horizon regressions as well. In finite samples, he finds that p-values

for the coefficients are much higher than OLS p-values casting doubt on the significance

of the coefficient. For long-horizon predictability, Valkanov (2003) shows that the coef-

ficients have limiting distributions that are functionals of Brownian shocks and the OLS

1volatility of dividend growth is constant in the one channel economy
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estimators of them are highly inconsistent. Goetzmann and Jorion (1993) find evidence

in their simulation based study that if returns follow a random walk but dividends are

autocorrelated, then the R2’s from long-horizon regressions could still be significant even

though there is no underlying predictability. For reasons similar to Valkanov (2003), they

conclude that the right-hand side variables are strongly correlated to lagged left-hand side

variables which gives rise to these fictitous R2’s when there is no underlying predictability.

Recently, Boudoukh, Richardson and Whitelaw (2008) (BRW) show that there is no extra

information in long-horizon regressions than is already factored in short-horizon ones. In

fact, they show that their return predicting coefficients and R2’s, when represented as mul-

tiples of one-year coefficient or R2’s, scale perfectly with time. This paper follows in the

same spirit as Goetzmann and Jorion (1993) modeling underlying autocorrelated shocks in

the dividends that show up in both dividend yields and returns, thereby creating the en-

vironment where underlying shocks can build through time to produce high predictability

coefficients.

Other equilibrium asset pricing models like Campbell and Cochrane (1999) and Bansal

and Yaron (2004) do not investigate time-variation in predictability coefficients. These

models simulate long-horizon returns and run OLS regressions to show evidence of long-

horizon predictability characterized by increasing coefficients and R2s. I replicate these

regressions in my model and get the same results. However, in my model, I am able to

solve for the predictability coefficient and without running any regressions I can evaluate

quantitative and qualitative properties of the coefficients. The coefficients show significant

time-variation, especially in longer horizon. However, this time-variation comes with a

price. To gauge what kind of unconditional inference can be drawn, I summarize the

variance of long-horizon predictability relationship relative to the variance of long-horizon
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returns in a pseudo-R2 quantity. This pseudo-R2 increases over the horizon purely due to

the fact that the variance of the predictability component increases faster than the variance

of overall returns. Thus, over longer horizon this pseudo-R2 increases artificially, whereas,

at least qualitatively it is hard to justify predictive power when this increase in pseudo-R2 is

due to the increase in variance of the predictability component. In essence, my equilibrium

model tells the following story - the parameters that comply with macroeconomic dynamics

and can match key asset pricing quantities imply significant time-variation in predictability

coefficients. This time-variation implies large unconditional variances of the predictable

component of long-horizon returns which creates doubt about return predictability in the

long horizon.

This paper also fits into the growing body of literature that endogenizes prices to address

the question of predictability like Menzly, Santos and Veronesi (2004) and Ang and Liu

(2007). Menzly, Santos and Veronesi (2004) deal with predictability in the cross-section

under habit persistance. Ang and Liu (2007) show the implication of endogenizing any two

of expected returns, dividend yields and volatilities, given any one of them and dividend

growth dynamics. Unlike Menzly, Santos and Veronesi (2004), I focus on predictability from

the perspective of long-run risk induced by a time-varying fluctation of expected growth

rates and DE preferences, and unlike Ang and Liu (2007) I endogenize all three of expected

returns, volatility and dividend yields given dividend dynamics and DE preferences.

The paper is subdivided into the following parts: section 1 discusses the details of the

model and establishes the predictability results. Section 2 discusses the estimation method-

ology. Section 3 covers the empirical findings on asset pricing quantities and equilibrium

predictability.
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1 The Model

1.1 Preferences and Dynamics

Power utility puts a heavy restriction on risk-aversion and elasticity of intertemporal sub-

stitution (EIS)- they are reciprocals of each other. EIS measures willingness to exchange

non-stochastic consumption today for tomorrow given a particular interest rate today. As

such, the restriction that power utility imposes is too strict on two very different concepts

- risk aversion is about preference over a random variable and EIS is substitution across

deterministic consumption paths. In equilibrium asset pricing, the power utility restriction

amounts to jointly establishing both the risk-free rate and equity premium through the

same parameter - risk aversion. Empirically, the power utility restriction is a dismal failure

giving rise to the equity premium puzzle and the corresponding risk-free rate puzzle. To

break the strict relationship between the two, recursive utility functions are introduced a

la Epstein-Zin-Weil that considers the concepts separately.

The utility function that is considered here is due to Duffie and Epstein (1992) which

is a continuous time counterpart of Kreps-Porteus and Epstein-Zin-Weil preferences. The

normalized utility function considered here is

f(C, J) =
β(1− γ)J

1− 1
ψ

[
C1− 1

ψ ((1− γ)J)
1
ψ
−1

1−γ − 1

]

where C is the current period consumption, J is the value function, ψ is the EIS, β is the

discount rate and γ is the risk-aversion. Assume furthermore that the representative in-

vestor is endowed with a log-recursive utility, which is a special case of the above preference
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with ψ = 1. The above utility function simplifies substantially in the ψ = 1 special case to

f(C, J) = β(1− γ)J

[
logC − log(1− γ)J

1− γ

]

The appendix also solves the model for the general case using log-linearization.

Assume that consumption and dividend growth jointly follow a geometric path with

mean reverting growth rate Xt,

dD

D
= (µD +Xt)dt+ σDdWD (1)

dC

C
= (µC + λXt)dt+ σCdWC (2)

dXt = −κXtdt+ σxdWX (3)

where the Brownian motion shocks are all uncorrelated. This formulation has its origin in

Abel (1999) and this is very similar to the one-channel model of Bansal and Yaron (2004)

except for one caveat - the parameter λ loads on the latent shock in consumption growth

rate instead of dividends. When a growth rate shock jointly hits expected dividend and

consumption growth, λ < 1 has the effect of tempering down the corresponding expected

consumption growth rate relative to dividend growth rate. This fact is also borne out in

the data. Figure 1 shows that real dividend growth rate has a lot of time-series variation

whereas the corresponding real consumption growth is quite smooth, and λ < 1 helps us

achieve that.

More interestingly, notice that the volatility of dividend and consumption growth are

non-stochastic and what I will show below is that unlike Bansal and Yaron (2004) one-

channel economy it still produces time-varying risk-premium. Furthermore notice that the
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correlation between all the Brownian motion shocks is set to zero, so that I can devote the

full attention to market price of risk and risk-premia stemming from the long-run risk due

to growth rate Xt.

The utility process J satisfies the Bellman equation with respect to equilibrium con-

sumption

DJ (C,X, t) + f(C, J) = 0 (4)

where DJ is the differential operator applied to J with respect to {C,X, t} with the

boundary condition J(C,XT , T ) = 0. I am interested in the equilibrium as T →∞. Thus,

I drop the explicit time dependence assuming that the agent is infinilitely long-lived and

has reached equilibrium over time.

Proposition 1.1.1 The solution to the Bellman equation in (4) corresponding to growth

rate dynamics in (1)-(3) and preferences given by Duffie-Epstein utility with EIS=1 is

J(Ct, Xt) =
C1−γ
t

1− γ exp (u1Xt + u2) (5)

where

u1 =
λ(1− γ)

κ+ β

u2 =
1− γ
β

[
µC −

1

2
γσ2

C +
λ2(1− γ)σ2

x

2(κ+ β)2

]

1.2 Asset Pricing

Duffie and Epstein (1992) show that the pricing kernel for stochastic differential utility,

Λt, is given by Λt = exp(
∫ t

0
fJds)fc. It has a particularly nice and elegant expression in
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closed form for ψ = 1, and the appendix shows a version corresponding to the log-linearized

solution of the value function for ψ 6= 1.

Proposition 1.2.1 The pricing kernel for EIS=1 is given by

dΛ

Λ
= −rft dt− γσCdWC −

(γ − 1)λ

κ + β
σxdWX (6)

where

rft = µC + λXt + β − γσ2
C (7)

The risk-free rate in (7) has many desirable properties which we do not observe in risk-free

rate derived from standard power utility setting. In this case, risk-free rate is actually

decreasing uniformly as risk-aversion, γ, increases, whereas in power utility I would need

γ really high for the precautionary savings term to kick-in and generate the same effect.

At that high level of risk-aversion, power utility implies that a one-percent increase in

consumption growth would increase the risk-free rate by γ-percent - a claim not supported

by the data. In the log-recursive case, a one-percent increase in consumption growth signifies

a one-percent increase in the risk-free rate due to ψ = 1. The proposition that risk-free

rate decreases in risk-aversion uniformly in the log-recrusive case is not surprising. Recall,

that in the log-recursive case γ > 1 is sufficient to generate preference for early resolution

of uncertainty. For high values of risk-aversion, i.e. strong preference for early resolution

of uncertainty, the agent is willing to settle for a lower certainty equivalence in the future

which reduces the risk-free rate. For ψ > 1 and higher preference for early resolution of

uncertainty, the appendix shows that the risk-free rate falls sharply and is less responsive

to changes in consumption growth rate than in the unit EIS case.
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Since there are two sources of consumption risk in this economy there are two market

prices of risk in (6). The first one is the traditional transient consumption risk term from

power utility coming from volatility of consumption growth, and the second is due to the

stochastic growth rate of consumption and recursive preferences and is popularly termed

long-run risk. Notice that if λ = 0 and there was no stochastic growth rate of consumption

then the long-run risk term will be zero. Moreover, notice that the long-run risk coefficient

(γ−1)λ
κ+β

σx = JX
J
σx measures change in the value function of the agent with respect to the

growth rate Xt. In recursive preferences, the value function is embedded within the utility

function. Thus volatility in marginal utility necessarily measures volatility in the life-term

utility of the agent - hence the name long-run risk.

Long-run risk is increasing in γ, but the effect is magnified due to κ and β in the denom-

inator. Recall, that the stationary distribution of Xt ∼ N
(

0, σx√
2κ

)
. Thus, as κ decreases

and the growth rate becomes more persistant, the volatility of growth rate increases and

an agent exposed to long-run risk from the volatile growth rate shocks seeks higher com-

pensation for bearing this risk. Notice, that the magnitude of the size of long-run risk can

be much higher vis-a-vis the risk from the transient consumption volatility as is shown in

Table II.

The long-run market price of risk for ψ 6= 1 is directly proportional to γ− 1
ψ

, which dis-

tinguishes DE preferences from standard time-separable preferences where γ = 1
ψ

. Clearly,

for time-separable preferences long-run risk vanishes. The quantity γ − 1
ψ

also determines

preference for early resolution of uncertainty. Thus, stronger the preference for early reso-

lution of uncertainty of the growth rates the higher the market price of risk.

Given the pricing kernel of the stochastic differential utility, I establish the equilibrium

price-dividend ratio and return dynamics.
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Proposition 1.2.2 Equilibrium price-dividend ratio is given by

Pt
Dt

= G(Xt) (8)

where G(Xt) =
∫∞
t

exp(P1(τ)Xt +P2(τ))ds, where τ = s− t, P1(τ) and P2(τ) are solutions

of a system of ODEs given in the appendix. The dynamics for cumulative excess return is

given by

dR =
dP +Ddt

P
− rft dt = µRt dt+ σDdWD +

GX

G
σxdWx

where equilibrium expected excess return is

µRt =
λ(γ − 1)

κ+ β

GX

G
σ2
x (9)

and the volatility of cumulative return given by

σRt =

√
σ2
D +

(
GX

G
σx

)2

(10)

This is the central result in the paper. Unlike Bansal and Yaron (2004), the PD ratio in

this one-channel economy is no longer exponentially affine but is non-linear in the expected

growth rate. The non-linearity of the growth rate in the log PD ratio is responsible for

generating time-varying equity premia and a dynamic predictability relationship. Notice,

that in the Bansal and Yaron (2004) economy, the assumed PD ratio is exponentially affine

in the growth rate (and also in conditional variance in the two-channel case) which makes

conditional volatility of PD ratio a constant, i.e. if G = P
D

= exp(a+bXt), where a and b are

constants, then Vol
(
dG
G

)
= bσx. Thus, if market price of risk fromXt is also a constant, then

risk premium will be a constant thus eliminating any time-series phenomenon in expected
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returns. In the Bansal and Yaron (2004) economy there is time variation in equity premia

only in the two-channel case due to time-varying volatility of consumption growth which

creates time-varying market prices of risk. In this case, the market price of risk is constant,

but the non-linearities in the log PD ratio creates time-varying volatilities in prices which

creates time-varying equity premia. In other words, the market price of risk is constant but

the quantity of risk is time-varying which gives rise to time-varying premia.

The cumulative return volatility (10) has two components - the first one is the transient

risk of the volatility of dividend growth and the other is due to long-run risk. To reinforce

the point on the non-linearity of the PD ratio, notice that the long-run risk component of

volatility is time-varying precisely because G(Xt) is not exponentially affine in the growth

rate Xt, which ensures that GX
G

would be time-varying making return volatility stochastic.

The expected excess return (9) seeks compensation for only long-run risk since the

correlation between all the Brownian motion terms are shut off. It is straight-forward to

incorporate those kind of risks from correlation, but for brevity I focus only on the long-run

risk component arising from non-linearity in the PD ratio. Notice that

GX =
1− λ
κ

∫ ∞

t

exp(P1(τ)Xt + P2(τ))(1− e−κτ )dτ (11)

If λ < 1, as has been assumed in the model to make expected consumption growth “slower”

than expected dividend growth, then GX > 0 which guarantees that expected return is

always positive. In the ψ 6= 1 case, GX > 0 if ψ > 1 along with λ < 1. Moreover, expected

return is positive and procyclical so long as the agent has preference for early resolution of

uncertainty, i.e. γ − 1
ψ
> 0. Thus, the above results that are obtained in closed form for

unit EIS carries over for ψ 6= 1, as long as γ and ψ are both greater than unity.
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1.3 Time-Series and Predictability

The non-linearity in the log price-dividend ratio presents valuable time-series dynamics

of aggregate returns. Before discussing predictability, it is essential that I discuss the

time-series nature of expected return. Since GX > 0, expected return is always positive.

Moreover, since

(
GX

G

)

X

=
1

G2

[∫ ∞

t

exp(·)dτ
∫ ∞

t

exp(·)P 2
1 (τ)dτ −

(∫ ∞

t

exp(·)P1(τ)dτ

)2
]
> 0

expected return is increasing in Xt.
2 Therefore, both PD ratio, and expected return rises

with positive growth rate shock. In response to a positive shock from underlying economic

growth rates, expected dividend growth increases. In response, the agent buys more of

the stock that pays future dividends which increases its prices relative to dividends. This

increases the quantity of risk that the agent bears. Since the market price of risk remains

unchanged, overall equity-premia rises. Therefore, in response to a good shock, dividend

yield decreases and expected return increases. From an equilibrium predictability point of

view that is only feasible if the coefficient on dividend yield goes in the opposite direction

from dividend yield from a shock in the growth rate. Let’s re-write the expression for

expected return in the form of a predictability relationship as

µRt =

[
(γ − 1)λ

κ+ β
σ2
xGX

]
Dt

P t
(12)

where Dt
Pt

= 1
G(Xt)

. We just established that the left hand side of this expression increases in

Xt, and the dividend yield on the right decreases in Xt. However, the stochastic component

2Here, exp(·) = exp(P1(τ)Xt + P2(τ)) is given in the appendix, and the expression above is positive
due to a direct application of Cauchy-Schwartz inequality to functions P1(τ)

√
exp(·) and

√
exp(·), both of

which are integrable in the domain as long as the transversality condition is satisfied.
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of the coefficient on dividend yield, GX , has the property that
(
GX
G

)
X
> 0. This ensures

that as G(Xt) increases (dividend yield decreases), GX also increases which “pulls up” a

diminishing dividend yield to produce higher expected return. It is shown pictorially in

Figure 3. This makes the coefficient of predictability itself time-varying - a fact empirically

uncovered in Dangl and Thomas (2011) and also shown in Lettau and van Nieuwerburgh

(2008). This stochastic nature of the predictability coefficient is missing in the equilibrium

literature. It helps us understand how an economy can have simultaneously both high

prices and high expected returns. It helps make returns stationary - when dividend yield

changes, the return predicting coefficient moves in the opposite direction to keep returns

stationary. The time-series property of the return predicting coefficient is magnified in the

long-horizon as I show below.

The overall result suggests that as growth rate increases, expected dividend growth

increases, the PD ratio increases (dividend yield decreases) and expected return increases.

Thus, return shocks and dividend yield shocks are strongly negative correlated. Now I

explore the effect of the time-variation in predictability coefficient for long-horizon returns.

1.3.1 Long Horizon Predictability

An investor with a long horizon holding period will invest Pt in the market at time t, and

hold it until time T when the price will grow to PT and he will also receive dividends from

time t to T . Thus, his total return is given by

R̄T =
PT +

∫ T
t
Drdr

Pt
(13)
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This is a particular convenient way to pose the long-horizon predictability relationship

because it is easier to solve. Notice I make one simplification where dividends are simply

accumulated and not ploughed back into the stock. Note that this is different from the

instantaneous excess return dynamics developed in (1.2.2), where I use dRt = dPt+Dtdt
Pt

−

rft dt = −Et
(
dP
P
, dΛ

Λ

)
+ · · ·dW . The latter expression, integrated forward to produce RT ,

is wholly unsuitable in analyzing long-horizon cummulative returns. This is because the

instantaneous cummulative return dynamics is of a dt - period return from t to t+ dt with

dividends Dt and risk-free rate rft held constant at time t. The expected growth rate Xt

also stays constant, and I can only account for price change due to Xt. Integrating forward

this quantity will not address the fact that there are dynamic relationships between prices,

dividends and risk-free rate through the growth rate which will grow over time in longer

horizon. To overcome this problem, I resort to looking at long horizon returns through the

quantity in (13) where I accumulate dividends from t to T and also consider the intermediate

shocks from dividend growth and risk-free rate to prices within holding period z = T − t.

First, I determine the dynamics of prices Pt. The full distribution of price growth from

t to T can be written as

PT = Pt exp

(∫ T

t

[
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
]
ds+

∫ T

t

σP (Xs) · dW
)

(14)

where dW = [dWD dWx]. The expressions for µP (Xt) and σP (Xt) are in the appendix.

µP (Xt) is the total change in price resulting from dividend growth, risk-free rate and com-

pensation for bearing risk Xt along with other higher order terms whose effect over the

long horizon could be substantial. σP (Xt) is a vector of volatility shocks arising from both

transient dividend shock and growth rate shock from Xt. They are determined by applying
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Ito’s Lemma to (8) and integrated forward. Similarly, dividend growth can be written as

Dr = Dt exp

(∫ r

t

(
Xs −

1

2
σ2
D

)
ds+

∫ r

t

σDdWD

)
(15)

Substituting them both into (13), I can write total return from t to T as

R̄T =

»
G(Xt) exp

»Z T

t

»
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
–
ds+

Z T

t
σP (Xs) · dWs

–
+

Z T

t
exp

»Z r

t
[Xs − σ2

D ]ds+

Z r

t
σDdWD

–
dr

–
Dt

Pt
(16)

This expresses cumulative return over horizon z = T − t as a function of current dividend

and growth rate shocks, as well as the effect of the entire path of the growth rates over the

horizon. The first term inside the parenthesis is total price growth from t to T and the

second term is the growth in dividends. At each point on the growth path, the risk-free rate

and dividend growth expectation changes because of stochastic growth rate Xt leading to a

change in price and, by extension, cumulative returns. It is straight-forward to see that the

non-linearity of endogenous shocks rule out any possibility that the statistical properties of

OLS will do justice in estimating the above expression.

Fortunately, the conditional expectation of the above expression in (16), has a more

tractable form without the Brownian shocks. First, observe that the conditional expectation

of future dividends has a closed-form solution.

Lemma 1.3.1 Conditional expectation of future dividend satisfies

Et [Dr] = Dt exp(A(s)Xt +B(s))

where s = r − t and A(s) and B(s) are in the appendix.

Now it is straightforward to establish conditional expectation of cumulative expected

return R̄T using the accounting identity (13).
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Proposition 1.3.1 The price process in (14) implies Et [PT ] = PtH(Xt, z) where H(Xt, z) =

Et

[
exp

[∫ T
t
µP (Xs)ds

]]
with z = T − t. Then, using Lemma (1.3.1)

Et[R̄T ] =
Et[PT ] +

∫ T
t
Et[Dr]ds

Pt

=

[
G(Xt)H(Xt, z) +

∫ T

t

[exp(A(r − t)Xt +B(r − t))]dr
]
Dt

Pt

= α(Xt, z)
Dt

Pt
(17)

To convert the conditional expectation relationship into a percentage return form, I simply

subtract one and focus on the quantity.

Et[R̄T ]− 1 =

[
G(Xt)(H(Xt, z)− 1) +

∫ T

t

[exp(A(r − t)Xt +B(r − t))]dr
]
Dt

Pt
(18)

The expression H(Xt, z) is conditionally known at time t and represents expected price

changes over horizon z due to the stochastic growth rate. It satisfies a second order partial

differential equation that depends on Xt and z. It has an unique solution given a set of

boundary condtions. One of them is natural H(Xt, 0) = 1 such that limT→tEt[PT ] = Pt.

However, due to all the non-linearties in Xt, its general form cannot be solved analytically,

and no sensible boundary conditions are available in the Xt-plane to solve it numerically.

Details are in the appendix. Thus, I resort to solving H(Xt, z) by simulating several

thousand paths of Xt→T to compute Et

[
exp

(∫ T
t
µP (Xs)ds

)]
for every initial point Xt.

The z-horizon return predictability coefficient α(Xt, z) is composed of two parts. There

is an expected dividend growth component and then an expected price growth compo-

nent as a dynamic response to dividend growth rates and dividend shocks. In traditional

predictability regressions of Shiller (1981) and Fama-French (1988), the above conditional
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expectation relationship is tested by running univariate regression of cumulative returns

of varying horizon on current dividend yields. The coefficients from these regressions are

taken as constants and tests on the coefficients are performed using standard assymptotics.

The structural relationship here suggests that the slope coefficient on these long-horizon re-

gressions are themselves stochastic with crucial time-series properties, and as such, treating

them as constants would lead to immense biases. The slope itself is a non-linear function of

the underlying state variable that also affects the regressor and as such should contribute

to the overall variance of the slope coefficient that treating it as a constant would miss. In

fact, looking at the immense non-linearity of (16) in the Brownian shocks, it looks like the

coefficient estimated via OLS will also be highly inconsistent. In fact, it confirms Valkanov’s

(2003) argument that the coefficient is a function of underlying shocks with fundamentally

different properties than standard assymptotics which he analyzes by using the Functional

Central Limit Theorem.

Another important aspect of these regressions is the explanatory power of the regression

typically measured in terms of higher R2-s as horizon increases. Fama and French (1998),

for example, find R2-s that range from 19% to as high as 64% over 1-5 year horizons.

The equilibrium models of Bansal and Yaron (2004) and Campbell and Cochrane (1999)

both show that return R2-s are also increasing over the horizon. However, Goetzmann

and Jorion (1993) and recent work of BRW (2008) have cast doubts on these findings. In

the latter work, for example, the authors find that the R2-s are not increasing but scale

with time and are, in fact, decreasing slightly as return horizon increases. Goetzmann and

Jorion (1993) show that one can still get high R2-s and significant coefficients where there

is no linear relationship between future returns and the dividend yield. The conditional

mean relationship given in (17), provides a theoretical foundation to compute pseudo-R2’s
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in longer horizon. To gauge the magnitude of pseudo-R2 from my structural model, I ask

the question - How much of the unconditional variance of R̄T can be explained by the un-

conditional variance of the conditional mean relationship in (17)? Thus, to infer the model

implied R2’s for longer horizon, I simply compute pseudo-R2 =
Var
“
α(Xt,z)

1
G(Xt)

”

Var(RT )
where Var

denotes unconditional variance. Notice that the coefficient of the conditional mean α(Xt, z)

is itself a function of Xt which also impacts the dividend yield 1
G(Xt)

. Empirical works that

treat the return predictability coefficient as a constant misses this extra uncertainty that

increases with time.

It is also obvious from the expression of α(Xt, z = T − t) that two return predicting

coefficients of different horizons T1 and T2 should also be correlated - not only through the

current expected growth rate Xt, but also because they will share the same expected price

and dividend growth changes upto min(T1, T2). Naturally this persistance will be stronger

if T1 and T2 are closer to each other than if they are further apart. Empirically, BRW

(2008) has found that this correlation between the return predicting coefficients is quite

significant. They are stronger when the horizons are closer as is the case in my model.

This establishes the full theory behind long horizon predictability that is completely

endogenized within a one-channel Bansal and Yaron (2004) economy under DE prefer-

ences. The setting here is tractable enough to produce a semi closed-form estimate of the

conditional mean of long-horizon regression with explicit expression for the long-horizon

predictability coefficient. The result shows time-series dependence between the return pre-

dicting coefficient and dividend yield rendering inference drawn from pure OLS based ex-

ercises biased and inconsistent.
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2 Empirical Methodology

2.1 A Bayesian Strategy

In order to get the parameter estimates that govern the above state-space, I follow a

Bayesian methodology. Let the full parameter set that guides the system be θ = {µD, µC, σD,

σx, κ, λ}. The goal is to get joint estimates of p(θ,X) conditional on the data on con-

sumption and dividend growth. Here, X denotes the full time-series of growth rates

{X1, · · · , XT}. We will follow a Markov Chain Monte Carlo (MCMC) algorithm that

will draw them conditionally on each other

p(θ|X) p(X|θ)

In order to generate the parameters and the time-series of the growth rates, first I discretize

dividend and consumption growth rates and write them in the familiar discrete-time state-

space notation. Let gdt+1 be dividend and gct+1 be consumption growth. Then the continuous-

time state-space can be written by taking dt = 1 as



gdt+1

gct+1


 =




(µD +Xt)

(µC + λXt)


 +



σD 0

0 σC


Z1 (19)

Xt+1 = (1− κ)Xt + σxZ2 (20)

where Z1 ∼ N(0, I2) and Z2 ∼ N(0, 1) are uncorrelated standard normals.

First, I draw the time-series of the growth rates X conditional on the rest of the pa-

rameter space, θ, and the full time-series of dividend and consumption growth. In order

to draw the time-series of growth-rates, I follow a Bayesian version of kalman filter called
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Forward Filtering Backward Sampling (FFBS) as introduced by Carter and Cohn (1996).

In this step, recall I am assuming that I know the rest of the parameters θ, and I draw the

full time-series of X given the full time-series of dividend and consumption growth.

Then, my goal is to draw the parameter set θ conditional on the full time-series of the

growth rates, which I have obtained in the above step using FFBS. Here I generate the pa-

rameters using a MCMC algorithm called Gibbs sampler by which I draw one parameter at

a time conditional on the rest of them - θi|θ−i, X, gd, gc, where θ−i is the rest of the param-

eters modulo the i-th one. In this simple state-space setting, all the posterior distributions

of the parameters are available in elementary conjugate form. The exact parameters of

these posterior distributions is discussed in detail in Allenby, McCulloch and Rossi (2005).

2.1.1 Priors

The strength of the Bayesian mechanism is the ability to specify prior information on the

growth rate X since it is not directly observable. Prior belief on the parameters of X - κ

and σx, based on the theory developed thus far allows incorporation of valuable economic

intuition into the estimation process precisely because Xt is not directly observable. In

order to generate high market prices of risk, I need the growth rate to be persistant. I

impose a prior on 1 − κ ∼ N(0.95, 0.12). Furthermore, my choice of hyperparameters for

prior on σx centers the prior mean of σx to be 0.015 - half the unconditional variance

of aggregate consumption growth, with fairly high uncertainty which will show up in the

posterior distribution of σx. Finally, since the theory heavily relies on λ < 1, I propose the

prior λ ∼ N(0.40, 12). Note, these are all proper but extremely diffuse priors. The 95%

confidence band of the prior distributions for these parameters is fairly wide and covers a

broad range of possible values. I leave it up to the data to play a crucial role in identifying
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the posterior distribution of these parameters.

2.2 Data

I use US data from 1929-2010 sampled annually. Aggregate dividend data is from CRSP

value-weighted portfolio. Cochrane (2008) points out that CRSP dividends capture all

payments to investors - including cash mergers, liquidations and repurchases. The risk-

free rate is obtained from the return on 90-day Treasury Bills. Aggregate consumption

is non-durables and services divided through by population growth to make it per capita

consumption. All nominal quantities are converted to real by deflating them by CPI.

3 Empirical Findings

The Gibbs sampler produces simulations of parameter values from their posterior distribu-

tions. The estimates from the state-space estimation (19)-(20) is reported in Table I in five

different quintiles from 2.5-97.5-th quintile. It is clear from the MCMC simulated draws

that the data has played a crucial role in pinning down the posterior distrubition of κ, σx

and λ. The posterior distribution of both of these parameters have tightened around the

posterior mean showing that the data provides valuable inference in mitigating the prior

uncertainty about these parameters. The parameter for which the data plays the most cru-

cial role is σx whose posterior mean is 0.027. Also, the time-series of growth rates that are

filtered from aggregate consumption and dividend growth match the time-series behavior

of the underlying series quite well as is shown in Figure 2.

Another important test whether the model parameters are meaningful is their ability

to produce key moments of the macro data. The model implies that the unconditional
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mean, standard deviation and first order autocovariance of consumption growth are µC ,
√
λ2 σ2

X

1−(1−κ)2 + σ2
C and λ2(1 − κ)

σ2
X

1−(1−κ)2 . Similarly, I can compute the unconditional mo-

ments of dividend growth. Table IB reports the posterior distribution of these moments

computed from the posterior distribution of the parameters simulated via MCMC. The

posterior distribution of the model implied moments match up very well with the data.

The only statistic it falls short on is the correlation of dividend and consumption growth.

Whereas in the data the correlation is 0.58, the model implied correlation is only between

0.30-0.47. That is primarily due to the fact that this a one factor model. With additional

latent shocks, like stochastic volatility, this shortcoming can be easily addressed.

The overall message is that the parameters drawn from the MCMC can reproduce

salient features of the macroeconomic data - the filtered draws of the states Xt can track

the observed time-series of consumption and dividend growth and the parameter draws can

match the key moments implied by the model.

3.1 Market Prices of Risk

To focus on asset pricing, I pick the following preference parameters - time discount pa-

rameter β = .001 and risk-aversion γ = 7.5. The posterior estimates of the market prices

of risk is in Table II. There are two sources of risk in my economy - transient consump-

tion volatility risk given by γσC and long-run risk from persistant growth rates given by

(γ−1)λσx
κ+β

. The posterior distribution of the price of long-run risk dominates the price of

transient volatility risk by a huge margin. Whereas the posterior mean of the price of

transient risk is 0.15, the posterior mean of the price of long-run risk is 0.58. Clearly, the

time-series of dividend and consumption risk implies that the magnitude of long-run risk is

extremely economically significant. Hence, an agent in this economy with DE preferences is
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far more averse to marginal utility shocks resulting from long-run risk than from traditional

transient consumption volatility shocks.

3.2 Asset Pricing

This subsection shows the quantative magnitude of key asset pricing quantities implied by

my model. Taking the posterior distribution of the parameters, I simulate the posterior

distribution of six key asset pricing quantities - expected excess return (9), volatility of

cumulative return (10), dividend-price ratio (8), volatility of changes in dividend-price

ratio, risk-free rate (7), the volatility of risk-free rate and the Sharpe Ratio. Since all of

these quantities depend on the growth rate Xt, I integrate it out by using the stationary

distribution of Xt ∼ N
(

0, σx√
2κ

)
to produce unconditional estimates. Table IV reports the

2.5-97.5-th quintiles of these quantities.

The model can match the equity premia (posterior distribution is 4.78-7.91%), dividend

yield (posterior distribution is 3.16-4.56%) and the low discount rate, β, helps to match the

risk-free rate (posterior distribution is 0.83-2.67%). The Appendix shows that for ψ > 1,

I can generate a far lower risk-free rate with higher discount rates. At the same time, my

model can also generate high volatilities of equity returns (posterior distribution is 16.22-

19.37%) and risk-free rate (posterior distribution is 1.68-2.51%). To gauge the effect of

long-run risk on equity volatility, notice that the volatility of changes in the dividend yield

is between 9.14-12.37% which is solely determined by exposure to long-run risk.

The parameters of the state-space that match the time-series properties of consumption

and dividend growth can generate plausible asset pricing quantities. Interestingly, there

is only one source of priced risk and that is sufficient to generate all of these quantities.

Clearly, additional factors, like stochastic volatility, can be used to enhance the quantitative
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effects. However, stochastic volatility is used in long-run risk models like Bansal and Yaron

(2004) to generate time-variation in expected returns. That is not a requirement in my

model. In fact, the time-variation in expected returns in this one-factor model generates

the central result of this paper which is the time-variation in the predictability coefficient.

That is discussed next.

3.3 Long Horizon Predictability

The standard iid view of the world implies that returns are unpredictable. However, stan-

dard regression tests like Campbell and Shiller (1988) show that high dividend-price (or

earnings-price) ratios are correlated with high expected returns. Fama and French (1988)

find significance in long-horizon return predictability. In terms of structural models, Camp-

bell and Cochrane (1999) and Bansal and Yaron (2004) show through simulations that the

long horizon coefficients are increasing in size over the horizon, are highly significant and

the predictive power based on R2-s from these regressions are also increasing. However, in

their regression tests they treat the coefficient as a constant, whereas in my model it has

its own time-varying properties.

In my case the long-horizon coefficient can be solved in a semi-closed form setting

and is shown to be time-varying which has ramifications with regards to long-horizon pre-

dictability. Furthermore, I can isolate the effect of price growth and dividend growth on

the coefficient. Both of these quantities are conditionally known and I can compute them

without running any regressions. I also compute how informative this conditional rela-

tionship through a pseudo-R2 ratio that measures the size of the unconditional variance of

the conditional mean given by the predictability relationship relative to the unconditional

variance of long-horizon return in my model.
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Before I go on to long-horizon predictability, let us focus on the stochastic nature of the

predictability coefficient.

µRt = GX
λ(γ − 1)σ2

x

κ + β

Dt

Pt

where Dt
Pt

= 1
G(Xt)

. Taking the median values of parameters from Table I, I compute expected

return, dividend yields and the stochastic component of the predictability coefficient GX

across high and low growth rates Xt that span the unconditional distribution of Xt ∼

N
(

0, σx√
2κ

)
. As Xt increases, clearly expected dividend growth increases. In response, the

bottom plot in Figure 3 shows that PD ratio increases, or dividend yield decreases. However,

expected return in the top plot also increases. The only way that is feasible is if the return

predicting coefficient increases and goes in the opposite direction from dividend yield. The

middle graph of GX suggests precisely that. It shows that the return predicting coefficient

“pulls up”(“pushes down”) a decreasing(increasing) dividend yield to make expected return

increasing (decreasing) in the growth rates. In essence, the return predicting coefficient

shows the effect of risk-premia. When PD ratio is high due to high growth rates, the

agent infers this “momentum” will continue because of positively autocorrelated growth

rate shocks and buys more of the risky security. This increases the quantity of risk that

he bears which increases the risk-premium. The opposite happens with decreasing growth

rate shocks when the investor holds less of the risky asset thereby reducing the quantity of

risk. The time-variation in the desire to bear risks is embodied in the time-variation in the

predictability coefficient. Dangl and Halling (2011) documents precisely this time-variation

in the predictability coefficient, and my model suggests a long-run risk based explanation

for this phenomenon.

27



The z-horizon conditional predictability coefficient is previously shown to be

[
G(Xt)(H(Xt, z)− 1) +

∫ T

t

[exp(A(s)Xt +B(s))]ds

]

that depends on the current growth rate Xt and the horizon z = T−t. The first component

of the coefficient is expected price growth from t → T , and the second reflects expected

dividend growth. Taking the 2.5, 50 and 97.5-th quintiles of parameters and states drawn

from the Gibbs sampler, I compute dividend growth and price growth at each point in time

for time horizons 1, 3 and 5 years. The time-series of expected dividend growth is shown

in Figures 5-7 and that of expected price growth in Figures 8-10.

First, let me focus on dividend growth. Assuming $1 of dividends at time t, the graph

shows expected dividend growth over horizons 1 (Figure 5), 3 (Figure 6) and 5 (Figure

7) years. The time-variation in expected dividend growth is substantial. In some periods,

responding to poor negative shocks in the growth rate of dividends, the expected dividend

growth falls below $1. While the time-series is more stable in the post-war years, the early

part of the sample around the Great Depression shows pronounced movements in expected

dividend growth. Following the stock market crash in 1929, expected dividend growth fell

precipitously. Then an increase in dividends, which came alongside a rebound in the stock

market in the mid 1930’s, shows large upswings in expected dividend growth which fell

again when the stock market crashed in 1937. Subsequent boom during World War II

lifted expected dividend growth, and the post-war time-series shows a lot less variability

until the stock market crash of 2009. The time-series pattern is the same across all horizons

although the magnitude of expected dividend growth changes substantially. The time-series

average of expected dividend growth for each horizon is {1.01,1.04,1.08}, although there
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is a quite a bit of uncertainty behind those growth figures. The 2.5 and 97.5 quintiles for

each of those quantities is {0.96,0.89,0.84} and {1.07,1.23,1.41}. Clearly, expected dividend

growth rises over the horizon. But, the uncertainty also increases. For a 5-year horizon, on

average, starting with $1 in dividends expected dividend growth is anywhere from $0.84 to

$1.41! This time-series variability in expected dividend growth is a lot more pronounced in

price growth which is discussed next.

To give an intuition of what this term looks like, Figure 4 plots the H(Xt, z)−1 function

for different values of Xt. Expected price growth over any horizon is clearly monotonic in

Xt, but it can be both positive and negative. Since growth rates are autocorrelated, if a

negative shock is realized expected dividend growth rate will be negative for quite some

time. Consequently, price of the asset which pays those dividends will also fall. Figures

8-10 show expected increases in PD ratio for horizons 1, 3 and 5 years, respectively. The

time-series variation in expected price growth is a lot more pronounced than expected div-

idend growth primarily due to the leverage effect created by λ < 1. Whereas the post-war

expected price growth is relatively stable, the largest increase takes place after the stock

market rebounded in the mid-1930’s. Following the market rebound, the market expecta-

tion of prices soared which dropped again when the stock market crashed in 1937. The

World War II years saw more fluctuation in expectation of prices which stabilized at the

end of the war. In the post-war years, the variability persists but not as pronounced as the

pre-war years. As is true for expected dividend growth, expected price growth increases in

horizon with substantial uncertainty. The time-series averages of price growth for horizons

1,3 and 5 years are {1.83, 3.60, 5.57}. However, the 2.5 and 97.5 quintiles are {0.45,-0.37,-

0.90} and {4.35,11.77,20.20}. Clearly, the leverage effect exacerbates the effect of dividend

growth rate shocks in prices. Interestingly, the price growth scales with the horizon. Di-
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viding the median estimates by the respective horizons, median price growths become

{1.83,1.20,1.11}. Since price growth clearly occupies the lion’s share of the long-horizon

predictability coefficient, the latter also scales with time - a fact uncovered empirically by

BRW (2008).

Having shown time-series variation in the predictability coefficient, it is interesting to

investigate what kind of unconditional claims we can make from this theory. Long-horizon

predictability is handled in the equilibrium asset pricing literature by simulating long-

horizons returns from the equilibrium model and running reduced form regressions. For

references, see Bansal and Yaron (2004) Table VI and Campbell and Cochrane (1999)

Table 5. Monotonically decreasing coefficients (on PD ratio) and increasing R2’s across

horizons are taken as theoretical justification of the classic pattern in the reduced form

works of Campbell and Shiller (1988) and Fama and French (1988). I perform the same

regressions in Table V. They also show monotonically increasing coefficients (on DP ratio)

and R2’s across the horizons. However, in my case these regressions are misspecified because

of the dependence between the coefficient of long-horizon predictability and the dividend

yield. Instead of relying on the R2s as evidence of long-horizon predictability, I compute

pseudo-R2s described in Section 1.3.1. These pseudo-R2s measure how much of the variance

of long-horizon return in my model can be explained by the long-horizon predictability

relationship and are shown in Table IV. Here as well, the pseudo-R2s increase over the

horizon, but with a big caveat. Across the horizons, the variance of the long-horizon

predictability relationship increases much faster relative to the unconditional variance of

long-horizon returns. In other words, pseudo-R2s increase simply because the variance of

the predictability relationship increases faster than the variance of total return for each

horizon. This is hardly an evidence for long-horizon predictability. In fact, it shows that
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over long-horizon the predictability relationship has a lot of uncertainty, which should give

us pause in rendering any qualitative judgement on long-horizon predictability. This result

is due to the fact that in my model the regressor (DP ratio) and the predictability coefficient

are jointly determined which increases the variance of the predictability relationship relative

to other models where the coefficient is constant.

4 Conclusion

This paper shows that if aggregate consumption and dividends share a single slow-moving

shock in the dynamics of their growth rate, then that has very important ramifications

for the PD ratio under recursive preferences. Simple Mertonian mechanics imply elegant

non-linearities in the PD ratio which creates stochastic volatility in returns and implies

time-varying equity premium. This is a key contribution of this paper since the extant

long-run risk literature (Bansal and Yaron (2004)) rely on stochastic volatility to generate

time-variation in equity premium. Moreover, this non-linearity in PD ratio creates time-

variation in the coefficient of predictability - an unexplored fact in the equilibrium asset

pricing literature although empirical works with time-varying coefficients are promising.

Parameters that can match key properties of consumption and dividend dynamics as well

as basic asset pricing quantities imply large time-variation in the coefficient of predictability

across all return horizons. However, there is one major caveat. The same parameters that

replicate key macro and asset pricing quantities seem to imply a large uncertainty in the

conditional mean of long-horizon predictability rendering statements about existence of

predictability unreliable.
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5 Appendix

Proof of (1.1.1) The Bellman equation in (4) can be written as

JCC[µC + λXt]− JXκXt +
1

2
JCCC

2σ2
C +

1

2
JXXσ

2
X + f(C, J) = 0

The continuation utility J has a solution of the form

(1− γ)J = exp(u0 lnCt + u1Xt + u2)

Substituting it in and collecting terms, reduces the above equation to a system of ODE’s

that can be solved recursively

u0 = (1− γ)

u1 =
(1− γ)λ

κ+ β

u2 =
(1− γ)

β

[
µC −

1

2
γσ2

C +
λ2(1− γ)σ2

x

2(κ+ β)2

]

Thus, the continuation utility function reduces to J(Ct, Xt) =
C1−γ
t

1−γ exp(u1Xt + u2).

Proof of Proposition ( 1.2.1) The pricing kernel for stochastic differential utility can

be written as

dΛ

Λ
=
dfC
fC

+ fJdt

Using the above utility function, let g = fC = β(1−γ)J
C

= βC−γ exp(u1Xt + u2) and fJ =

−β(1+u1X+u2). Use Ito’s Lemma on g and (2) and (3) one can rewrite the pricing kernel
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as

dΛ

Λ
= −rft dt− γσCdWC −

λ(γ − 1)

κ+ β
σxdWX

rft = λXt + µC − γσ2
C + β

Proof of Propostion (1.2.2) The stock price of a firm is

Pt =
1

Λt
Et

∫ ∞

t

ΛsDsds

=
1

Λt

∫ ∞

t

EtΛsDsds

Define ht = ΛtDt. Thus

dh

h
= [(1− λ)Xt + µD − µC + γσ2

C − β]dt− γσCdWc −
λ(γ − 1)σx
κ+ β

dWx + σDdWD

Applying Feynman-Kac, Et [ΛsDs] = f(ΛtDt, Xt, s − t) = f(ht, Xt, τ = s − t). Applying

Ito’s Lemma to f and the martingale restriction, I get the following PDE

fhh[(1−λ)Xt+µD−µC+γσ2
C−β]−fXκXt+

1

2

(
fhhdh

2 + fXXσ
2
x

)
−fhX

λ(γ − 1)σ2
x

κ + β
−fτ = 0

Guess a solution of the form f = ht exp(P1(τ)Xt + P2(τ)). Plug the solution in the above

PDE and after collecting the terms in the constant and Xt, I get a system of ODE’s of the

form

P ′1(τ) = (1− λ)− κP1(τ)

P ′2(τ) = µD − µC + γσ2
C − β − P1(τ)σ2

x

[
λ(γ − 1)

κ+ β
− 1

2
P1(τ)

]
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with initial conditions P1(0) = P2(0) = 0. The solution of these ODEs are

P1(τ) =
1− λ
κ

(
1− e−κτ

)

P2(τ) = aτ + b(e−κτ − 1) + c(1− e−2κτ )

a = µD − µC + γσ2
C − β +

σ2
x(1− λ)

2κ

[
1− λ
κ
− 2

λ(γ − 1)

κ + β

]

b =
1− λ
κ

[
σ2
x

κ

[
1− λ
κ
− λ(γ − 1)

κ + β

]]

c =
σ2
x(1− λ)2

4κ3

Thus, Et [ΛsDs] = ΛtDt exp(P1(τ)Xt + P2(τ)) which implies

Pt = DtG(Xt)

where G(Xt) =
∫∞
t

exp(P1(τ)Xt + P2(τ))ds. The transversality condition holds for a < 0.

Cumulative excess return dRt =
Dtdt+dP−rft dt

Pt
over a small interval dt is

dRt = µRt dt+ σDdWD +
GX

G
σxdWx

where µRt = −Covt
(
dΛt
Λt
, dPt

)
= GX

G
λ(γ−1)
κ+β

σ2
x.

Long Horizon Predictability: The expression for z = T − t-horizon total return is

R̄T =
PT +

∫ T
t
Drdr

Pt

To compute the expression for long run predictability, first let us write down the SDE that
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G satisfies:

dG = µGdt+ σGdWx

where

µG =
σ2
x

2

∫ ∞

t

exp(·)P 2
1 (τ)ds− κXt

∫ ∞

t

exp(·)P1(τ)ds

−
∫ ∞

t

exp(·) (P ′1(τ)Xt + P ′2(τ))) ds− 1

σG = σx

∫ ∞

t

exp(·)P1(τ)dτ

Furthermore, since Pt = DtG(Xt), then

dP

P
=

[
µD +Xt +

µG
G

]
dt+ σDdWD +

σG
G
dWx

= µP (Xt)dt+ σP (Xt) · dW (21)

where µP (Xt) =
[
µD +Xt + µG

G

]
and σP (Xt) =

[
σD

σG
G

]
and dW = [dWD dWx]. In

integral form, that can be expressed as

PT = Pt exp

[∫ T

t

[
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
]
ds+

∫ T

t

σP (Xs) · dWs

]
(22)

The dividend process in (1) can be written as Dr = Dt exp
[∫ r
t

[Xs − 1
2
σ2
D]ds+

∫ r
t
σDdWD

]
.

Thus, z-horizon return can be written as

R̄T =

»
G(Xt) exp

»Z T

t

»
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
–
ds+

Z T

t
σP (Xs) · dWs

–
+

Z T

t
exp

»Z r

t
[Xs − σ2

D ]ds+

Z r

t
σDdWD

–
dr

–
D

P
(23)

Fortunately, the conditional expectation of R̄T has an easier form. First, I need to
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compute Et[PT ] = f(Pt, Xt, z = T − t). Applying Feynman-Kac to f and enforcing the

martingale restriction produces the PDE,

fPP
[
µD +Xt +

µG
G

]
− fxκXt +

σ2
x

2
fXX +

P 2

2
fPP

(
σ2
D +

σ2
G

G2

)
− fz + PfPX

σGσx
G

= 0

Notice that the above PDE is homogeneous of degree 1 in Pt. Thus, I can propose a solution

of the form f = PtH(X, z) which reduces it to

[
µD +Xt +

µG
G

]
− HX

H
κXt +

σ2
x

2

HXX

H
+
HX

H

σGσx
G

=
Hz

H

with boundary condition H(Xt, 0) = 1. Thus Et[PT ] = PtH(Xt, z). Using ( 22) and

the law of iterated expectations, I can write Et[PT ] = PtEt

[
exp

[(∫ T
t
µP (Xs)ds

)]]
which

implies H(Xt, z) = Et

[
exp

(∫ T
t
µP (Xs)ds

)]
which satisfies the boundary condition that

H(Xt, 0) = 1. The conditional expectation of dividends can be obtained from a direct appli-

cation of Feynman-Kac and can be solved in closed-form. Et[Dr] = Dt exp [A(s)Xt +B(s)]

where

A(s; κ) =
1− e−κs

κ

B(s) = µDs+
σ2
x

2κ2
(s− 2A(s; κ) + A(s; 2κ))

and s = r− t. Now, conditional expectation of cumulative return over any horizon from T
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to t can be written as

Et[R̄T ] =
Et[PT +

∫ T
t
Drdr]

Pt

=
Et[PT ] +

∫ T
t
Et[Dr]dr

Pt

=

[
G(Xt)H(Xt, z) +

∫ T

t

[exp(A(r − t)Xt +B(r − t))]dr
]
Dt

Pt

= α(Xt;T, t)
Dt

Pt

H(Xt;T, t) = Et

[
exp

[∫ T
t
µP (Xs)ds

]]
. Thus, the conditional mean of cumulative return

depends on the whole path of the growth rates Xs from t to T which can be generated

given an initial Xt.

Unfortunately, the conditional or unconditional variance has no easy formulation. One

has to simulate the full sample path of R̄T according to (23) and compute the variance

based on simulation.

Price-Dividend Ratio for ψ 6= 1: The above analysis holds for ψ = 1. Here I show

that for ψ 6= 1, the price-dividend ratio is isomorphic to the ψ = 1 case. Hence, the

predictability results that I derived earlier would hold for ψ 6= 1 as well. More specifi-

cally, I show in this section that the positive relationship between growth rates and the

price-dividend ratio - the centerpiece of our above analysis, holds here for ψ > 1.

The normalized aggregator for the general ψ case is given by

f(C, J) =
β(1− γ)J

1− 1
ψ

[
C1− 1

ψ ((1− γ)J)

1
ψ
−1

1−γ − 1

]
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The Bellman equation still takes the form

JCC[µC + λXt]− JXκXt +
1

2
JCCC

2σ2
C +

1

2
JXXσ

2
X + f(C, J) = 0

where f(C, J) now takes the general form. Guess a solution of the form J = C1−γ
1−γ g(Xt)

and plug it into the Bellman equation. It reduces to

β

1− 1
ψ

[
g

1
ψ
−1

1−γ − 1

]
+ µC + λXt −

γ

2
σ2
C −

gX
g

κ

1− γXt +
σ2
X

2(1− γ)

gXX
g

= 0 (24)

The pricing kernel takes the form

dΛ

Λ
= −rft dt− γσCdWC −

γ − 1
ψ

1− γ
gX
g
σXdWX

rft = β +
µC
ψ
−
γ
(

1 + 1
ψ

)
σ2
C

2
− σ2

X

2

(
γ − 1

ψ

)(
1− 1

ψ

)

(1− γ)2

(
gX
g

)2

+
λ

ψ
Xt

In order to price assets, I need a solution of the function g which should satisfy the functional

relationship given by (24).

First, I will solve for the price of discounted future consumption, and then look for

a solution of g around the unconditional mean of the consumption-wealth ratio. The

discounted price of future consumption is given by

Wt =
1

Λt
Et

∫ ∞

t

ΛsCsds

Applying Fubini’s Theorem and taking standrad limits (refer to Cochrane(2005) Pages
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27-29), the consumption wealth ratio is given by the relationship

Ct
Wt

dt = rft dt− Et
[
dW

W

]
− Et

[
dΛ

Λ

dW

W

]
(25)

Guess Wt = Ct
g(Xt)

1− 1
ψ

1−γ

β
. Applying Ito’s Lemma

dW

W
=

"
µC + λXt −

1− 1
ψ

1− γ
gX

g
κXt +

1− 1
ψ

1− γ
σ2
X

2

"
gXX

g
+
γ − 1

ψ

1− γ

„
gX

g

«2
##

dt+ σCdWC +
1− 1

ψ

1− γ
gX

g
σXdWX

Plugging in wealth dynamics, risk-free rate and the pricing kernel into (25), I get

Ct
Wt

= β +

(
1

ψ
− 1

)(
µC + λXt −

γσ2
C

2
− gX

g

κ

1− γXt +
σ2
X

2(1− γ)

gXX
g

)

= β +

(
1

ψ
− 1

)(
1− g

1
ψ
−1

1−γ

)
β

1− 1
ψ

= βg
1
ψ
−1

1−γ

The second line follows from the first line due to the Bellman equation restriction in (24).

This confirms that my choice of consumption-wealth ratio is right. In fact, as ψ → 1,

the consumption-wealth ratio approaches β which is a familiar result for unit elasticity of

intertemporal substitution.

Now, let µ = E
[
ln C

W

]
. A first-order approximation of the consumption to wealth ratio

around µ produces

βg
1
ψ
−1

1−γ =
Ct
Wt

≈ eµ(1− µ) + eµ

(
ln β +

1
ψ
− 1

1− γ ln g

)
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Substituting the approximation above into (24), the original Bellman equation reduces to

1

1− 1
ψ

"
eµ(1− µ) + eµ

 
lnβ +

1
ψ
− 1

1− γ ln g

!
− β

#
+ µC + λXt −

γ

2
σ2
C −

gX

g

κ

1− γ Xt +
σ2
X

2(1 − γ)

gXX

g
= 0

This has the familiar exponentially affine solution g(Xt) = eu1Xt+u2, where u1 and u2 are

given by

u1 =
λ(1− γ)

κ+ eµ

u2 =
1− γ
1− 1

ψ

[
1− µ+ ln β − e−µβ

]
+

1− γ
eµ

[
µC −

γσ2
C

2
+
σ2
Xλ

2(1− γ)

2(κ+ eµ)2

]

Now, the pricing kernel and risk-free takes the form of

dΛ

Λ
= −rft dt− γσCdWC −

(
γ − 1

ψ

)
λ

κ + eµ
σXdWX

rft = β +
µC
ψ
−
γ
(

1 + 1
ψ

)
σ2
C

2
−

(
γ − 1

ψ

)(
1− 1

ψ

)
σ2
Xλ

2

2 (κ + eµ)2 +
λ

ψ
Xt

= A +BXt

Notice that as ψ → 1, the consumption to wealth ratio converges to β, i.e. µ → ln β as

ψ → 1. Plugging in that limit makes the function g, risk-free rate and risk-prices converge to

their ψ = 1 limit derived in the previous section. Thus, this method can also be considered

to be an approximate solution around ψ = 1.

At this point, I apply the same methodology as in the previous section to derive the

price-dividend ratio which takes the form

G(Xt) =

∫ ∞

t

exp(P1(τ)Xt + P2(τ)ds,
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where τ = s− t. P1(τ) and P2(τ) are given in closed form as

P1(τ) =
1− λ

ψ

κ

(
1− e−κτ

)

P2(τ) = aτ + b
(
e−κτ − 1

)
+ c
(
1− e−2κτ

)

a = µD − A+
σ2
X

(
1− λ

ψ

)

2κ


1− λ

ψ

κ
− 2

(
γ − 1

ψ

)
λ

κ+ eµ




b =
σ2
X

(
1− λ

ψ

)

κ2


1− λ

ψ

κ
−

(
γ − 1

ψ

)
λ

κ + eµ




c =
1

κ



σX

(
1− λ

ψ

)

2κ




2

As ψ → 1, P1 and P2 converge to the solutions derived in the earlier section. The risk-

premia in this case is given by µRt = GX
G

λ(γ− 1
ψ)

κ+eµ
σ2
X .

First of all, notice that for expected excess return to be positive, we need early resolution

of uncertainty, i.e γ > 1
ψ

. The central predictability result derived in the earlier section

depended on GX
G

> 0. For ψ 6= 1, this quantity will be positive as long as 1 − λ
ψ
> 0.

We have estimated λ to be far less than one, and thus if ψ > 1, that ensures GX
G

> 0 for

ψ 6= 1. Risk-premia was pro-cyclical in the previous section as long as γ > 1. In this case,

risk-premia is pro-cyclical as long as γ > 1
ψ

which holds if γ and ψ are both greater than

one.

Thus, the predictability relationship derived in closed form for ψ = 1 in the previous

section will also hold in the ψ > 1 setting.
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Figure 1: Time-Series Plot of Aggregate Dividend Growth against Aggregate Consumption
Growth.
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Figure 2: The top graph shows median expected consumption growth rate (dotted line in
red) against actual consumption growth (solid line in blue). From the posterior distribution
of parameters and the latent state Xt, I form the posterior expected consumption growth
rate using µC + λXt and report the median of the time-series. The bottom graph shows
median expected dividend growth rate µD +Xt against dividend growth.
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Figure 3: The top panel plots expected excess return (9) across different growth rates, Xt.
The middle panel plots GX and the bottom panel plots the dividend price ratio 1

G
. The

parameters used are the median parameters which are summarized in Table I.
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Figure 4: The function H(Xt, z) − 1 for z = 1, 3 for different X ′s taken from the uncon-

ditional distribution of Xt ∼ N

(
0, σx√

(2κ)

)
using the median parameter values in Table

I.
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Figure 5: Time-series of expected future dividends over a horizon of 1 year. Taking 2.5, 50
and 97.5th quintile of parameters and states Xt obtained from the MCMC, I plot expected
future dividends in one year using Lemma 1.3.1.
.
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Figure 6: Time-series of expected future dividends over a horizon of 3 years. Taking 2.5, 50
and 97.5th quintile of parameters and states Xt obtained from the MCMC, I plot expected
future dividends in three years using Lemma 1.3.1.
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Figure 7: Time-series of expected future dividends over a horizon of 5 years. Taking 2.5, 50
and 97.5th quintile of parameters and states Xt obtained from the MCMC, I plot expected
future dividends in five years using Lemma 1.3.1.
.
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Figure 8: Time-series of price-growth over a horizon of 1 year. Taking 2.5, 50 and 97.5th
quintile of parameters and states Xt obtained from the MCMC, I plot expected price growth

in one year using H(Xt, 1) = Et

[
exp

(∫ 1

t
µP (Xs)ds

)]
. The expression for µP (Xs) is given

in the appendix.
.
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Figure 9: Time-series of price-growth over a horizon of 3 years. Taking 2.5, 50 and 97.5th
quintile of parameters and states Xt obtained from the MCMC, I plot expected price growth

in three years using H(Xt, 3) = Et

[
exp

(∫ 3

t
µP (Xs)ds

)]
. The expression for µP (Xs) is

given in the appendix.
.
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Figure 10: Time-series of price-growth over a horizon of 5 years. Taking 2.5, 50 and 97.5th
quintile of parameters and states Xt obtained from the MCMC, I plot expected price growth

in five years using H(Xt, 5) = Et

[
exp

(∫ 5

t
µP (Xs)ds

)]
. The expression for µP (Xs) is given

in the appendix.
.
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Table IA: The following represents the parameter estimates from estimating the state-
space given in (19)-(20) via a Gibbs sampler. The posterior distribution is presented in
the form of 2.5-th to the 97.5-th quantiles of the simulated posterior draws from the Gibbs
sampler. The data used for this sample is annual aggregate dividend from CRSP value-
weighted index and BLS consumption(non-durables and services) growth in the US from
1929-2010. All nominal quantities are converted to real using CPI.

0.025 0.25 0.5 0.75 0.975

σD 0.0864 0.0952 0.1004 0.1060 0.1182
σC 0.0174 0.0191 0.0201 0.0212 0.0235
σx 0.0234 0.0258 0.0271 0.0286 0.0319
κ 0.0989 0.1026 0.1044 0.1063 0.1101
λ 0.3033 0.3304 0.3440 0.3572 0.3833
µC 0.0108 0.0164 0.0195 0.0228 0.0293
µD −0.0004 0.0139 0.0212 0.0284 0.0427

Table IB: The following represents the posterior distribution of key moments of real con-
sumption and dividend growth implied by the model (19)-(20). The posterior distribution
is presented in the form of 2.5-th to the 97.5-th quantiles of the moments computed from
the parameter estimates in Table IA. The sample statistics are computed from annual ag-
gregate dividend from CRSP value-weighted index and BLS consumption(non-durables and
services) growth in the US from 1929-2010.

Data 0.025 0.25 0.5 0.75 0.975

Mean of dividend growth 0.0231 −0.0004 0.0139 0.0212 0.0284 0.0427
Mean of consumption growth 0.0199 0.0108 0.0164 0.0195 0.0228 0.0293

Vol. of dividend growth 0.1455 0.1051 0.1133 0.1179 0.1229 0.1338
Vol of consumption growth 0.0295 0.0259 0.0280 0.0292 0.0305 0.0331
AC(1) of dividend growth 0.2127 0.1719 0.2152 0.2402 0.2684 0.3263

AC(1) of consumption growth 0.4519 0.3580 0.4307 0.4690 0.5069 0.5764
Corr of dividend and consumption growth 0.5819 0.2989 0.3437 0.3729 0.4053 0.4690
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Table II: This Table documents the posterior distribution of market prices of risk given in
(6). Given the full parameter distribution summarized in Table I, I compute the posterior

distribution of transient volatility risk - γσC and long-run risk (LR risk) - (γ−1)λσx
κ+β

. The
2.5 to 97.5-th quantile of the posterior distribution of the two risks is presented below.
Furthermore, I use β = 0.001 and γ = 7.5.

0.025 0.25 0.5 0.75 0.975

Transient risk 0.1305 0.1432 0.1508 0.1590 0.1763
LR risk 0.4718 0.5390 0.5774 0.6186 0.7110

Table III: Below I present quantiles from the posterior distribution of endogenous quan-
tities with β = 0.001 and γ = 7.5. Then using the full parameter distributions obtained
through the Gibbs sampler, I compute the posterior distribution of instantanoues expected
excess return, instantaneous volatility of cumulative return, the Sharpe-ratio, the dividend-
price ratio, the risk-free rate and the volatility of the risk-free rate. For all of the fol-
lowing quantities, I integrate out the initial state Xt by using its stationary distribution

Xt ∼ N
(

0, σx√
2κ

)
. The corresponding sample statistics are obtained from CRSP Value-

Weighted Market Index and the 90-day T-Bill Rate also obtained from CRSP. All nominal
quantities are deflated by the CPI. Empirical estimates are obtained with GMM, and stan-
dard errors are Newey-West corrected with five lags. The data interval is annual from
1929-2010.

Data 0.025 0.25 0.5 0.75 0.975

µR 0.0702(0.0177) 0.0478 0.0564 0.0614 0.0670 0.0791
σR 0.2011(0.0183) 0.1321 0.1417 0.1469 0.1524 0.1638

Sharpe ratio 0.3512(0.0211) 0.3335 0.3872 0.4171 0.4513 0.5247
D
P

0.0392(0.0035) 0.0316 0.0456 0.0534 0.0606 0.0760
Vol

(
dG
G

)
0.1536(0.0211) 0.0914 0.1009 0.1064 0.1120 0.1237

rf 0.0104(0.0078) 0.0083 0.0143 0.0175 0.0207 0.0267
σ(rf) 0.0403(0.0059) 0.0168 0.0192 0.0205 0.0219 0.0251

57



Table IV: This table shows the pseudo-R2’s of the predictability relationship using (16)
and (17). I restrict myself to the 0.25, 0.5 and 0.75-th quantiles of parameters given in
Table I. Furthermore, I use β = 0.001 and γ = 7.5 and simulate using monthly increment
by setting dt = 1/12.

The unconditional variance of R̄T in ( 16) is computed by using the total variance
formula - V ar(R̄T ) = V arX(E(R̄T |Xt))+EX(V ar(R̄T |Xt)). Starting at many different X ′ts
drawn from its unconditional distribution, I simulate out R̄T and form the inner conditional
expectation and variance for each starting point. Then I perform the outer expectation and
variance to compute the unconditional mean. In all, 250,000 paths are used to compute
each V ar(R̄T ). I repeat the same exercise to compute the variance of the conditional mean -
[Et[R̄T ]] in (17). To form pseudo-R2, I simply divide the variance of Et[R̄T ] by the variance
of R̄T .

z(years) Quantiles 0.25 0.5 0.75
1 V ar(R̄T ) 0.0192 0.0208 0.0224

V ar[Et[R̄T ]] 0.0018 0.0021 0.0026
pseudo− R2 0.0926 0.1022 0.1139

3 V ar(R̄T ) 0.0671 0.0859 0.0894
V ar[Et[R̄T ]] 0.0212 0.0285 0.0378
pseudo− R2 0.3164 0.3317 0.4234

5 V ar(R̄T ) 0.1568 0.1867 0.2283
V ar[Et[R̄T ]] 0.0731 0.1171 0.2062
pseudo− R2 0.4663 0.6272 0.9031
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Table V: This table shows results of predictability regression Rt+z = a + bDt
Pt

+ ε where
ε ∼ N(0, 1) and z = 1, 3, 5 years. The data for this regression is generated the following
way. First, I discretize the state equation (3) and simulate the growth rates Xt in monthly
frequency for 720 months (roughly the size of post-war sample). Then, I compute monthly
dividend growth by discretizing equation (1) and price-dividend ratio from equation (8).

Using the relationship Rt+1 = Dt+1

Dt

Pt+1
Dt+1

+1

Pt
Dt

, I create monthly returns. From monthly returns,

I compound to create 1-5 year returns and run the above predictability regressions. This
is repeated 10,000 times. The parameters for the simulation are the median parameters
taken from the estimation in Table I. Below, I present the median and 2.5-97.5 quantiles of
the point estimate of the coefficient on dividend yield b, T-statistics of b and and R2 from
10,000 predictability regressions from 60-year simulated data.

z(years) median 0.025 quantile 0.975 quantile
1

b 0.6279 0.3192 0.9738
T-stat 3.6120 1.4713 6.2442

R2 0.1863 0.0366 0.4062
3

b 6.6225 2.7519 10.1020
T-stat 5.2306 1.7531 10.0113

R2 0.3322 0.0529 0.6457
5

b 38.7433 11.1834 62.1032
T-stat 5.3320 1.3194 11.1188

R2 0.3491 0.0322 0.6999
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