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Abstract

Mixing information from macroeconomic fundamentals and yields helps to understand bond

return predictability. We derive the term-structure of interest rates from a structural setting

with CRRA preferences and flexible dynamics of macroeconomic growth rates that puts for-

mal restrictions between factor dynamics and risk premia. By letting conditional volatilities

of the growth rates fluctuate through time, we generate a quadratic term-structure model

along with time-variation in bond risk-premia that is determined endogenously. Estimating

the parameters from yield curve and the macroeconomic fundamentals jointly, we conclude

that by effectively using prior information to mix bond yields and macroeconomic variables,

we can predict bond returns better than from either matching time-series of yields or macroe-

conomic fundamentals. The posterior distribution of R-squares obtained from this partial

equilibrium setting can be as high as 8-10% on bond returns of maturity 2-5 years. Further-

more, bond risk-premia is small and largely negative in the post-Volcker regime.

Keywords: Equilibrium Yield Curve, Bayesian MCMC, Filtering, State-space models, Bond

return predictability. JEL Classification Code: C11, G12.
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Introduction

The term-structure of interest rates is a curiousity of both financial economists and macroe-

conomists. The former studies the term-structure under powerful no-arbitrage models (see

for example Duffie and Kan (1996) and Dai and Singleton (2000)), but the precise relation-

ship of the short-rate with macroeconomic variables is left unexplored. Macroeconomists are

interested in knowing how the Fed conducts its monetary policy and what information the

yield curve conveys in determining the Fed’s decision. Of late, a literature has emerged that

tries to put the two together - by constraining the short-rate to economic variables and then

imposing the effect of no-arbitrage on this short-rate to determine the yield curve. This paper

imposes one more structural restriction by introducing preferences that imposes constraints

between factor dynamics and the underlying risk-premia in the economy. Empirically, we use

priors to mix information from macroeconomic variables and yield curve, and that helps us

in predicting bond return. From partial equilibrium dynamics, we get posterior distribution

of R2’s that rise as high as 8-10% on bond returns of maturity 2-5 years. This is similar

to the R2’s arising from macroeconomic yield curve models like Ang, Dong and Piazzesi

(2007) (henceforth ADP (2007)) and Campbell, Sunderam and Viceira (2008) (henceforth

CSV (2008)).

The macroeconomic term-structure literature has many flavors. Some start with a struc-

tural model of the economy that gives rise to a version of Taylor rule, and then impose

no-arbitrage by exogenously specifying the dynamics of market prices of risk. For example,

Gallmeyer, Hollifield and Zin (2005), Hordahl, Tristani and Vestin (2006), etc. fall into this

category. Another strand of the literature starting with Sargent (1979) has tried to esti-

mate VAR systems of yields under the assumption of Expectations Hypothesis. Following

Campbell and Shiller (1991)’s evidence on the failure of the Expectations Hypothesis, Ang

and Piazzesi (2003) start with a VAR specification of underlying macroeconomic dynam-

ics, posit the short-rate to be affine in these variables and build a no-arbitrage model of
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the yield curve by exogenously specifying the market prices of risk to address the failure of

the Expectations Hypothesis. They uncover that imposing no-arbitrage restrictions improve

out-of-sample forecasts over VAR predictions. Recent work by ADP (2007) show that the

VAR-affine dynamics is flexible enough to accomodate many different formulations of Taylor

rules, and they provide a unifying framework to study different flavors of such interest rate

rules. Here, as well, the authors exogenously specify the prices of risk.

In this paper, we propose a dynamic model of macroeconomic fundamentals, specify

preferences and impose no-aritrage to determine the yield curve. We assume that agents

have CRRA preferences and we take as given the joint dynamics of consumption and CPI

growth. Expected consumption growth and expected inflation follow a VAR system with

dynamic feedback effects, and the conditional volatilities of the growth rates are further

time-varying. We show that even though the nominal pricing kernel has iid shocks, the

presence of time-varying conditional volatilities of the growth rates produce time-varying

risk premia. In other words, even though the market prices of risk are constant, the quantity

of risk is time-varying. Ultimately, this setting produces an yield curve that is linear in

the growth rates but quadratic in the conditional volatilities of the growth rates making

it a quadratic term-structure model in the tradition of Longstaff (1989), Constantinides

(1992), Ahn, Dittmar and Gallant (2002), and others. Recently, CSV (2008) also explores a

quadratic term structure model with reduced form market prices of risk where the covariation

between inflation and the real pricing kernel can switch-signs, is non-linear in the volatilities

and can generate a quadratic yield curve. The assumption of CRRA preferences greatly

facilitates the derivation of a closed-form solution of the yield curve which we take directly

to the data. There is a long literature dating back to Mehra and Prescott (1985) and Weil

(1989) that shows the inability of time-separable CRRA preferences to match observed risk-

premium from stocks and risk-free rates jointly. The failure occurs in trying to determine

aversion from risk and preference for certainty equivalence of consumption jointly through

the curvature parameter of time-separable CRRA preferences. In our context, we do not have
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this simultaneous problem. If we were to explain equity premium (aversion from an unknown

stock price in the future) and bond yields (shifting non-stochastic consumption across time)

jointly, then we would need some new machinery like the utility functions due to Epstein

and Zin, or Duffie and Epstein. However, since our focus is on determining bond yields only,

we are unlikely to face the conundrums that gave rise to the equity-premium/risk-free rate

puzzle.

The main contribution of this paper is to estimate parameters and state variables from the

above equilibrium quadratic yield curve with underlying consumption and CPI growth. We

estimate our parameters and filter state variables jointly from the yield curve and macroeco-

nomic variables by preserving discipline on the coefficients in the yield curve that is imposed

by underlying dynamics, preferences and the no-arbitrage restriction. Our main finding is

that combining macroeconomic variables with yield curve dynamics generates risk-premia

that can explain bond returns much better than if we extracted premia from either source.

This idea of estimating parameters and state variables by mixing information from both

macro fundamentals and the yield curve that are determined jointly is at the heart of any

economic term-structure model. Like ADP (2007), we take a Bayesian approach, and use

priors informatively in order to mix information from the macroeconomic fundamentals and

the yield curve. By changing priors we can accomodate different exposures to each series. For

example, we can use priors to put a heavy emphasis on the yield curve. We can fit the yield

curve very tightly like a reduced form model, but the underlying latent variables that are fil-

tered in that process bear little resemblance to the underlying economic structure. Similarly,

we can generate parameters and latent shocks to fit the time-series of the macroeconomic

fundamentals, but they cannot generate the time-series fluctuations of the yield curve. How-

ever, using a moderate prior that pulls in information from both the macroeconomic variables

and the yield curve, we generate parameters and latent variables that can not only match

the time-series of yields and macroeconomic fundamentals reasonably well, but also generate

risk-premia that can explain bond returns with economically significant R2’s. The setting

5



that fits the yield curve too strongly generates risk-premia that is too high and negatively

correlated with actual bond returns, whereas the setting that fits macroeconomic fundamen-

tals closely simply cannot generate any statistically significant risk-premia. Thus, exposure

to both data sources through the help of priors helps us to address key model implications

that are implied by a dynamic term-structure model like predictability. The filtering of state

variables is a particularly challenging problem in our setting because of the non-linearity in

the yield curve and the underlying macroeconomic dynamics. Hore, Lopes and McCulloch

(HLM) (2009)2 develop a non-linear filtering algorithm by generalizing the logic behind For-

ward Filtering and Backward Sampling (FFBS) developed in Carter and Kohn (1994) and

Fruhwirth-Schnatter (1994). We use a particular version of the HLM (2009) methodology

adopted to fit the non-linearities of the quadratic term-structure generated by underlying

non-linearities in the growth rate dynamics.

Econometrically, we are similar to ADP (2007) because we estimate both the yield curve

and the macroeconomic fundamentals jointly, but our filtering problems are very different.

Their filtering task is strictly linear and they use standard Bayesian filtering mechanisms

to filter and smooth an univariate latent variable. We have two filtering problems - one

linear and the other non-linear. First of all, our model implies a forward-looking Taylor rule

similar to (Clarida, Gali and Gertler, 2000) where the nominal rate is a linear function of

expected inflation and expected consumption growth - none of which are observable in our

model. Furthermore, the conditional volatilities of each of these latent variables are also

unobservable and they enter non-linearly in the yield curve as well as growth dynamics. In

our filtering exercise, we filter all four of these latent variables. Whereas filtering the growth

rates is a linear filtering problem for which we use the standard FFBS of Carter and Kohn

(1994), the non-linear filtering problem is executed using the generalized FFBS of HLM

(2009).

This paper is organized as follows - section 1 describes the model and sets up the state-

2available at http://www.rob-mcculloch.org/some papers and talks/papers/working/hore lopes mcculloch.pdf
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space setting, section 2 discusses the prior settings we analyze and briefly discuss the empir-

ical methodology, section 3 discusses the findings and section 4 concludes.

1 The Model

Assume real consumption, ct, and CPI, qt, follow the joint process

dct
ct

= µct dt+ σc dWc (1)

dqt
qt

= µqt dt+ σq dWq (2)

where corr(dWc, dWq) = ρcqdt. Expected consumption growth and expected inflation fol-

low predictable processes with time-varying conditional volatilities. The dynamics of the

expected growth rates and their conditional volatilities are

dµct = (αc0 − αc1µct − αc2µqt ) dt+ ϑct dBc (3)

dµqt = (αq0 − αq1µct − αq2µqt ) dt+ ϑqt dBq (4)

and

dϑct = (βc0 − βc1ϑct) dt+ εc dZc (5)

dϑqt = (βq0 − βq1ϑqt ) dt+ εq dZq (6)

where corr(dWc, dBc) = ρ1 and corr(dWq, dBq) = ρ2. Expected growth rates ((3)-(4)) follow

a joint process where expected inflation directly enters into expected consumption growth,

and vice-versa. Their innovations (dBc and dBq) are independent, but conditional volatilities

of the joint processes are time-varying (ϑct and ϑqt ) and follow independent Gaussian processes

((5)-(6)). All the time-varying latent growth rates and their conditional volatilities are known
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to the investor. For simplicity, the covariance between other conditional volatilities have been

shut down to focus on premia generated by conditional volatilities to expected consumption

growth and expected inflation.

The interaction between the growth rates is similar to the VAR systems in the reduced

form term-structure literature (Dai and Singleton (2000,2002), Duffee (2000), Duffie and

Singleton (1997), among others) where the goal is to come up with a flexible factor structure

that would still produce an affine, or a generally tractable solution. In this context, it

allows us to incorporate valuable macroeconomic phenomenon into the yield curve under a

structural setting. For example, (3) suggests that expected inflation will affect consumption

growth and will thus affect real interest rates. Thus, αc2 6= 0 is a violation of the Fisher

hypothesis which posits independence between real rates and expected inflation. In discrete-

time, ((3)-(4)) reduces to a system of VARs that allow for dynamic feedback between the

growth rates of the macroeconomic fundamentals. The key difference between the VAR

term-structure literature, e.g. ADP (2007), Ang and Piazzesi (2003), Diebold, Rudebusch

and Aruoba (2006) and this paper is that all the time-series variables are latent. They are

related to underlying macroeconomic variables, but ultimately they manifest themselves in

the yield curve, which is determined endogenously.

The innovations in the growth rates are time-varying and follow independent univari-

ate Vasicek processes ((5)-(6)). The motivation for stochastic volatilities in the system of

VARs that describe evolution of macroeconomic quantities goes back to Bernanke and Mihov

(1998a, 1998b), and Stock’s (2001) comments on Cogley and Sargent (2001). Stock (2001)

points out that Cogley and Sargent’s (2001) measure of regime shifts in inflation could be due

to time-varying conditional volatilities in their underlying dynamical system. The setting

here incorporates the view of Sims (2001) that the conditional volatilities to the system of

VAR’s are time-varying. Notice that since the conditional volatilities follow arithmetic pro-

cesses, their sign can be positive or negative. Identification is provided by the endogenously

determined yield curve as these conditional volatilities determine the sign of time variation
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in risk-premia.

Let the investor be endowed with CRRA preferences of the form u(ct) =
c1−γt

1−γ , where γ is

relative risk-aversion. Furthermore, let the real pricing kernel be Mt = e−φtu′(ct), whereas

the nominal pricing kernel be defined by Mn
t = Mt

qt
, where φ is the time-preference parameter.

Given the utility function, the pricing kernel, the consumption (1) and price processes (2),

the nominal and real short rate process for the investor follows:

Proposition 1.1 The nominal short rate process is

rnt = γµct + µqt + k (7)

where k = −[ 1
2
γ(1 + γ)σ2

c + σ2
q + ρcqγσcσq − φ]. The corresponding real rate is

rt = γµct + φ− 1

2
γ(1 + γ)σ2

c (8)

The nominal (Mn
t ) and real (Mt) pricing kernels are given by

dMn
t

Mn
t

= −rnt dt− γσcdWc − σqdWq

dM

M
= −rtdt− γσcdWc

Proof: In Appendix.

The interest-rate model is similar to a forward looking Taylor rule consistent with Clarida

and Gertler (1998), Clarida, Gali and Gertler (2000) and ADP (2007). The nominal short-

rate in (7) can be written as

rnt = k + γEt

[
dct
ct

]
+ Et

[
dqt
qt

]
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ADP(2007) identify that there are many Taylor rule specifications that map into the same

affine term structure dynamics in their model. The distinction here in this structural setting

is that the underlying fundamentals create a non-linear term-structure model due to the

stochastic innovations in the growth rates.

In differential form, the real short-rate can be written as

drt = (at − αc1rt) dt+ γϑct dBc(t) (9)

where at = γαc0 + αc1(φ− 1
2
γ(1 + γ)σ2

c )− γαc2µqt . The effect of expected inflation on the real

rate is visible through the long-run mean, at, of the real short-rate. If Fisher hypothesis

were true and expected inflation and the real rate were independent, then αc2 would be zero

and the real short-rate process will be independent of expected inflation. But, a failure of

Fisher hypothesis would imply that the date t long-run mean of the real rate is determined by

expected inflation. Whether or not the long-run mean is increasing or decreasing will depend

on the sign of αc2. If αc2 < 0 (αc2 > 0), then a higher inflation expectation would increase

(decrease) the long-run mean of the real rate which would also be inconsistent (consistent)

with the Mundell-Tobin effect. Similarly, the nominal short-rate can be written as

drnt = (ant − αc1rnt ) dt+ γϑct dBc(t) + ϑqt dBq(t) (10)

where

ant = (γαc0 + αq0 − αc1k)− (γαc2 + αq2 − αc1)µqt −
αq1(rt − φ+ 1

2
γ(1 + γ)σ2

c )

γ

The nominal interest rate process written in differential form shows it is a four-factor model.

Two of them, conditional volatility of expected inflation and expected consumption growth,

determine the conditional volatility of the nominal short-rate. The other two, expected

consumption growth and expected inflation, drive the contamporenous nominal short-rate.
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A nominal bond pays $1 at time T , whereas the real bond pays $qT/qt, which is by

construction 1-real dollar. Thus, following Yared and Veronesi (2000) the price of a nominal

P n or real P r bond at time t with maturity τ = T − t in this setting is given by the standard

asset-pricing relationship

Et[dP
n] = rnt P

ndt− Et
[
dMn

Mn
dP n

]
(11)

Et[dP
r] = rtP

rdt− Et
[
dM

M
dP r

]
(12)

(11) suggests that the change in nominal bond price is due to nominal interest rate and a

risk-premia term. The real bond price in (12) offers compensation for consumption risk, but

since it shields the buyer from inflation it doesn’t offer any premia for exposure to inflation

risk. The risk-premia term for either bond is there to accomodate the failure of expectations

hypothesis by introducing a compensation for exposure to aggregate risk expressed in the

real and nominal pricing kernels in (1.1). The failure of expectations hypothesis is widely

known in the literature (e.g. Campbell and Shiller (1991)) and the current macroeconomic

term-structure models (ADP (2007), Bikbov and Chernov(2006), Ang and Piazzesi (2003))

address risk-premia by exogenously specifying market prices of risk that are affine functions

of the underlying state variables that simultaneously also determine the nominal rate. We

differ here in two ways. First, whereas expected consumption growth and expected inflation

determine the level of the nominal or real rate, the conditional volatilities of these growth

rates determine risk-premia. Furthermore, the setting here puts formal restrictions between

risk-premia and underlying dynamics. The market prices of risk in this economy are constant,

but the quantity of risk is time-varying. Due to CRRA preferences and the dynamics of

consumption and price growth in ((1)-(2)), the market prices of risk are simply γσc and σq.

However, time-varying conditional volatilities of expected consumption growth and expected

inflation are responsible for generating the time-varying risk-premia.
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The derivation of prices is now straight-forward.

Proposition 1.2 The equilibrium no-arbitrage price of a nominal bond at time t that ma-

tures at τ = T − t with consumption and CPI processes given by (1)-(2), the latent growth

rates (3)-(4), volatility given by (5)-(6) and pricing kernel given in (1.1)

P n
t (τ) = exp(A(τ,Θ) +B(τ,Θ)µct + C(τ,Θ)µqt +D(τ,Θ)ϑct + E(τ,Θ)ϑqt +

F (τ,Θ)ϑc
2

t +G(τ,Θ)ϑq
2

t ) (13)

where Θ is the entire parameter space governing ((1)-(6)), risk aversion γ, time-preference

parameter φ and A · · ·G constitute a system of ordinary differential equations with initial

condition A(0) = · · · = G(0) = 0 that ensures a payoff of P n
T (0) = 1.

Price of a real bond P̂ with similar specification is also exponentially affine with a different

set of ODE’s Â · · · Ĝ.

Define yield of a nominal bond at time t with maturity τ to be ynt (τ) = − lnPnt (τ)

τ
. In this

case, it follows from (13) that the nominal yield curve can be written as

ynt (τ) = −1

τ
(A(τ,Θ) +B(τ,Θ)µct + C(τ,Θ)µqt +D(τ,Θ)ϑct + E(τ,Θ)ϑqt + (14)

F (τ,Θ)ϑc
2

t +G(τ,Θ)ϑq
2

t )

The yield curve is linear in the growth rates and quadratic in the conditional volatilities of

the growth rates. Thus far, with the exception of CSV (2008), the empirical macroeconomic

term-structure literature has focussed on macroeconomic dynamics that generate an affine

model of the yield curve. The distinction with CSV (2008) is that this is a partial equilibrium

dynamics, whereas they rely on exogenous specification of risk prices like the affine macro

term-structure literature.

Quadratic latent factor pricing models date back to Longstaff (1989), Beaglehole and

Tenney (1992), Constantinides (1992) and Ahn, Dittmar and Gllant (2002). Constantinides’
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(1992) model posits a pricing kernel that is quadratic in the underlying state-variables which

follow conditionally Gaussian processes as in here. The short-rate is itself quadratic in the

underlying state-variables, which gives rise to a quadratic term structure. Similarly, Ahn,

et. al. (2002) also start by positing the nominal short-rate to be quadratic in the underlying

state-variables and empirically test the strength of quadratic term structure models and

find that they outperform affine models in terms of their goodness of fit. However, none

of these quadratic term-structure models embed themselves into a macroeconomic setting

and estimate the full model along with underlying macroeconomic dynamics. In particular,

inference of state variables in this literature is severely constrained by non-linearties. In

fact, Ahn, et. al. (2002) circumvent the filtering problem by using efficient method of

moments proposed by Gallant and Tauchen (1998). This paper develops a novel method by

generalizing the theory behind Kalman filters to estimate the non-linear state variables. CSV

(2008) also faces a non-linear filtering problem which they estimate by using the unscented

Kalman filter of Julier and Uhlmann (1997). The method used here is fairly general and can

be applied to a host of filtering problems with non-linearity in transition density of states

and/or observation equations.

The expected return from a nominal and a real bond can be obtained from the pricing

equation (13).

Et

[
dP n

P n

]
= (rnt + ρ1γσcB(τ)ϑct + ρ2σqC(τ)ϑqt ) dt (15)

Et

[
dP r

P r

]
= (rt + ρ1γσcB̂(τ)ϑct) dt (16)

Expected return on a nominal bond can be decomposed into three parts - the first com-

ponent is due to the prevailing nominal rate, and the other two are premia for holding a

nominal bond that is exposed to time-varying volatilities in expected consumption growth

and expected inflation. The predictability relationship above tells us that in response to a
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changes in conditional volatilities to expected consumption growth (ϑct) and expected infla-

tion (ϑqt ), the excess nominal bond premia (over the risk-free nominal rate) are expected to

change by ρ1γσcB(τ) and ρ2σqC(τ) respectively. The differential effect of bonds of different

maturity is captured by the solutions of ODEs B(τ) and C(τ) given in the appendix. Since

limτ→0 B(τ) = 0 (same for C(τ)), risk-premia vanishes for bonds that are close to maturity

and increases for bonds with longer maturity. Their sign depends on the underlying parame-

ter space - risk-aversion γ and the autoregression coefficients in the growth rate dynamics in

((3)-(4)). B(τ) and C(τ) are loadings on expected consumption growth and expected infla-

tion in bond prices given in (13). As such, B(τ) and C(τ) should be negative, because there

is a positive relationship between expected inflation and expected consumption growth and

the nominal interest rate. Thus, we expect the loadings −B(τ)/τ and −C(τ)/τ in the yield

curve equation (14) to be positive. Moreover, the sign on the risk-premia also depends on the

sign of the correlations ρ1 and ρ2, or of the instantaneous conditional volatilities ϑct and ϑqt ,

which determine the time-series properties of the growth rates. Since ϑct and ϑqt are generated

from arithmetic processes, their signs could be positive or negative. Thus, the conditional

volatilities of the growth rates can produce positive or negative time-varying risk-premia. It

is also noteworthy to point out that this predictability relationship is fundamentally different

from the ones in ADP (2007), Ang and Piazzesi (2003), and Chernov and Bikbov (2006). In

their works, the level of the nominal short-rate and the risk-premia are both driven by the

same macroeconomic or latent shocks. In this case, the level of the short-rate is determined

by µct and µqt , whereas the risk-premia is determined by the conditional volatilities of the

growth rates, ϑct and ϑqt . Thus, the yield curve here has the flavor of an unspanned stochastic

volatility model of the yield curve similar to Casassus, Collin-Dufresne and Goldstein (2005),

but without any parameter restrictions. Cochrane and Piazzesi (2005) explore bond-return

predictability with linear combinations of forward rates. They find strong evidence that

information contained in the yield curve explains bond return predictability. Our approach

here is similar in spirit in the sense that we are trying to extract information from the yield
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curve to explain premia but from an equilibrium angle. In the empirical section, we compute

the right-hand side of (15) from information obtained from the yield curve and compare it

against actual bond return. Notice, this formulation of risk-premia is also due to CRRA

preferences. We know that CRRA preferences perform very poorly in generating high risk-

premia in equities giving rise to the equity premium puzzle of Mehra and Prescott (1985).

However, our focus is on bond risk-premia. The assumption of CRRA preferences greatly

facilitates the closed-form solution of the yield curve and risk-premia under the non-linear

dynamics of our system.

Also, notice that the real bond does not offer any risk-premia for expected inflation

since it offers protection from inflation. Following Yared and Veronesi (2000), we can define

inflation risk-premia to be the expected excess return on the nominal bond over the real

bond, i.e. inflation-risk premia (IRP) is

IRP (τ) =

(
Et

[
dP n

P n

]
− rnt

)
−
(
Et

[
dP r

P r

]
− rt

)

= ρ1γσc(B(τ)− B̂(τ))ϑct + ρ2σqC(τ)ϑqt (17)

To sum up, a fully structural model of the yield curve is presented here that is driven

by CRRA preferences, joint conditionally Gaussian dynamics of growth rates of expected in-

flation and consumption growth along with time-varying conditional volatilities of expected

growth-rates. Jointly, they determine the yield curve that falls into the family of quadratic

term-structure models, and it produces time-varying risk-premia due to the time-varying

volatilities of expected inflation and expected consumption growth. Next, we discuss a fun-

damental issue of macroeconomic term-structure literature that separates it from traditional

factor-based term-structure models and a novel approach to estimating a joint dynamics of

macroeconomic time-series and cross-section of yields.

The state-space: Before proceeding to the empirical part, let’s focus on the challenges

posed by the above setting. We have a non-linear nominal yield curve that is structurally
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determined by CRRA preferences, consumption and CPI processes ((1)-(2)), growth rate

dynamics ((3)-(4)) and conditional volatilities of growth rates ((5)-(6)). The goal is to

consider the full state-space - the yield curve and macroeconomic fundamentals jointly, that

also preserves the parameter discipline in the yield curve induced by underlying CRRA

preferences and dynamics of macroeconomic fundamentals. The full dynamics can be written

jointly as

ynt (τ) = −1

τ
(A(τ,Θ) +B(τ,Θ)µct + C(τ,Θ)µqt +D(τ,Θ)ϑct + E(τ,Θ)ϑqt +

F (τ,Θ)ϑc
2

t +G(τ,Θ)ϑq
2

t ) + ετ
dct
ct

= µct dt+ σc dWc

dqt
qt

= µqt dt+ σq dWq

dµct = (αc0 − αc1µct − αc2µqt ) dt− ϑct dBc

dµqt = (αq0 − αq1µct − αq2µqt ) dt− ϑqt dBq

dϑct = (βc0 − βc1ϑct) dt+ εc dZc

dϑqt = (βq0 − βc1ϑqt ) dt+ εq dZq

where Θ is the entire parameter space of the model. First of all, notice that there is an

additional term ετ that is added to the yield equation of the state-space. It is there to break

a stochastic singularity problem detailed below. Taken together - the yields and macroe-

conomic fundamentals, form a state-space that is at the heart of a macroeconomic term-

structure system that should jointly address the time-series of the macroeconomic variables

as well as a cross-section of yields.

Assume, there are p yields in the sample. Therefore, the full-set of observables are

p yields, consumption and CPI growth for a total of p + 2 observables. However, there

are only four latent variables. One can sacrifice the entire macroeconomic dynamics and

simply use four yields to invert the state-space. But, that would defeat the purpose of this
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being a macroeconomic term-structure model without brining in underlying macroeconomic

fundamentals. Adding the error-term ετ offers the flexibility of using more than a pre-

determined set of yields and also allows us to incorporate macroeconomic dynamics as will

be shown in the next section. Now using the entire set of p + 2 observables (p yields, 2

macroeconomic fundamentals), we can filter the macroeconomic growth rates - µct and µqt ,

and the corresponding conditional volatilities - ϑct and ϑqt . This parameter, ετ also allows us

to “mix” information from both yields and macroeconomic time-series which forms the basis

of the empirical contribution of the paper and is detailed in the next section.

The growth rates of expected consumption and expected inflation enter linearly into

the state-space system above. As such, we can use a standard Kalman filter to estimate the

growth rates. Filtering the conditional volatilities ϑct and ϑqt is a completely different problem

because it enters non-linearly in the entire system - yields and growth dynamics. This paper

develops a novel approach to generalize the logic of Kalman filters to produce a methodology

to produce filtered and smoothed estimate of the conditional volatilities. The methodology

is completely general and can be used in a host of models with non-linear latent shocks.

2 Empirical Methodology

2.1 Prior Choice and “mixing”

In order to see clearly the effect of ετ in this state-space system, let us write the full system in

discrete time. First, define a set of variables. Let dt = 1 and stack the full system together.

Let a τ period nominal bond yield at time t be defined by ynt (τ) = − lnP τt
τ
. Let there be p

such maturities and time-series of consumption growth and CPI growth rates be denoted

by yc = yc1, · · · , ycT and yq = yq1, · · · , yqT . In our empirical methodology, we discretize the

continuous-time set-up from the previous section. Following Johannes and Polson (2005) and

Eraker, Johannes and Polson (2003), this form of discretization has become fairly standard
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in the literature. Let

yt+1 =




ynt (τ1)
...

ynt (τn)

yct+1

yqt+1




,µt =


 µct

µqt


, vt =


 ϑct

ϑqt


 and v2

t =


 (ϑct)

2

(ϑqt )
2


.

Furthermore, define a set of variables

m0 =




A(τ1)
−τ1
...

A(τn)
−τn

0

0




, m1 =




D(τ1)
−τ1

E(τ1)
−τ1

...

D(τn)
−τn

E(τn)
−τn

0 0

0 0




,m2 =




F (τ1)
−τ1

G(τ1)
−τ1

...

F (τn)
−τn

G(τn)
−τn

0 0

0 0




,m3 =




B(τ1)
−τ1

C(τ1)
−τ1

...

B(τn)
−τn

C(τn)
−τn

1 0

0 1




,

e =


 αc0

αq0


, f =


 βc0

βq0


, g =


 (1− βc1) 0

0 (1− βq1)


, E =


 ε2c 0

0 ε2q


, Vt =


 ϑct

2 0

0 ϑqt
2


,

W =




ε2τ InXn 0 0

0 σ2
c ρσcσq

0 ρσcσq σ2
q


, d =


 (1− αc1) −αc2
−αq1 (1− αq2)


, Σt =




0nX1 0nX1

ρ1ϑ
c
tσc 0

0 ρ2ϑ
q
tσq


.

and now the full state-space can be written in matrix form as

yt+1 = m0 +m1vt +m2v
2
t +m3µt +Wt+1 Wt+1 ∼ Nn+2(0,W ) (18)

µt+1 = e+ dµt + Ut+1 Ut+1 ∼ N2(0, Vt) (19)

vt+1 = f + gvt + Et+1 Et+1 ∼ N2(0, E) (20)

and Σt is the covariance between the innovations in (18) and (19). ( 18) is the “obser-

vation” equation in the sense that we observe the yields and the macroeconomic series of
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consumption and CPI. Equations (19)-(20) are the “state” equations in the sense that they

describe the evolution of the underlying latent states. All the parameter restrictions are

embedded through the no-arbitrage ODE’s stacked in the coefficient on the yield curves in

{m0, m1, m2, m3}. Furthermore, notice the non-linear nature of the state-space - vt enters

non-linearly in the observation equation (18) as well as in the state equation (19).

To emphasize the role of priors, notice that the theory does not guide us to determine

how to tie down ετ . Thus far, the role of ετ is to break stochastic singularity but it can

also be used to estimate parameters and latent-variables by mixing information from both

the yield curve and macroeconomic fundamentals. The observation equation (18) reveals

that if one were to set the prior on ετ in such a way that the posterior distribution of ετ is

centered on a very small number, then the resulting state-variables and parameters will be

very strongly influenced by the yield curve and less by the macroeconomic fundamentals. If,

however, one were to set the prior on ετ such that the posterior is centered on a relatively

larger number, then the same resulting parameters and state-variables will be determined

primarily by the macroeconomic fundamentals and less by the yield curve. A prior setting

in between on ετwill extract information - i.e. estimate state-variables and parameters, from

both yield curve and the macroeconomic fundamentals.

Notice that this analysis embeds three different types of term-structure models. The

tight prior which draws information from only the yield curve is isomorphic to a four-

factor Gaussian term-structure model that gives rise to a quadratic yield curve. As will

be shown, it does what factor models are designed to do - it fits the yield data tightly

and draws state-variables and parameter estimates from the yield curve but forsakes the

macroeconomic series. As such, it is no-different from a traditional factor model where the

factors are statistically chosen without much economic content. The loose prior primarily

draws parameter estimates from the macroeconomic data. It results in a poor fit of the

yield curve as the loose prior fails to extract substantial information from asset prices. The

joint prior draws information from both the yield curve and the macroeconomic time-series.
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Different from a statistical model whose goal is to tightly fit the yield curve - like the tight

prior, this prior setting draws information from both the yield curve and the macroeconomic

series thereby giving it a strong macro term-structure flavor. The resulting fits with the yield

curve are not as good as the tight setting, but substantially better than the loose setting.

Moreover, the state-variables extracted from this setting looks much closer to the economic

growth rates and volatilities than the loose setting. This way of looking at the problem is

novel in the literature since the theory simply does not guide us on the size of this pricing

error-term.

Another interesting observation from the joint setting is that the risk-premia generated

from this setting does a much better job in explaining bond returns than the tight or

the loose setting. Taking the distribution of parameters and the latent state variables,

we construct the time-series of nominal bond risk-premia according to (15) and match it

against bond return data constructed from the same yields we are matching empirically.

We find that the parameters and state-variables extracted from the joint prior that pulls

in information from both yield curve and macroeconomic fundamentals does a superior job

in bond return predictability over the tight setting that fits the yield curve very closely.

Details are provided in Section 3. This displays the strength of macroeconomic models over

statistical ones. Whereas the latter does a superior job in matching a sample of yields, it

fails to live upto other model implications, like risk-premia that can address predictability.

The strength of this paper is that all of the above is shown in a very restrictive equilibrium

framework where preferences and dynamics fully tie-down the yield curve, and does not

have the additional degrees of freedom from having an exogenous parameterization of the

risk-premia as in ADP (2007) or CSV (2008).
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2.2 Bayesian MCMC

We use a Bayesian Markov Chain Monte Carlo (MCMC) methodology - the Metropolis-

Hastings sampler, to make inference about the parameter space and the latent states.

Bayesian methodologies to estimate dynamic models in finance have been made popu-

lar through Johannes and Polson (2005), Eraker (2004) and others. They employ similar

Metropolis algorithms, but the non-linear filtering methodology is novel to this paper that

generalizes the logic of the Bayesian version of Kalman filter called Forward Filtering Back-

ward Sampling and is explained in the Appendix. Thus far, filtering stochastic volatility in

the Bayesian literature goes back to Jacquier, Polson and Rossi (1994) and Kim, Shepherd

and Chib (1998). The main difference between this paper and Jacquier, et. al. (1994) is

that the conditional volatilities here are both filtered and smoothed which avoids the high

autocorrelation in the states of Jacquier, et. al.(1994). The filtering technique of Kim, et.

al. (1998) is of a very particular parameteric model which does not correspond to the model

presented here. CSV (2008) also employs a non-linear filtering mechanism. The difference

between their methodology and ours is that ours is based on the full probability distribution

of the space we are trying to filter from conditional on the data and the rest of the param-

eters and growth rates, whereas their methodology relies on the local approximation of the

first two moments. Secondly, our methodology fits into the MCMC paradigm providing an

unifying framework to filter and estimate parameters jointly.

Very briefly, the Bayesian methodology gives the joint distribution of

p(µ, v,Θ|y)

where the full data sample is denoted by y that includes a cross-section of the yield curve

along with the macroeconomic dynamics, µ = {µ1, · · · , µT} the expected growth rates,

v = {v1, · · · , vT} the conditional volatilities of the growth rates and Θ is the full set of

parameters of macro quantities and preferences. The Metropolis-Hastings sampler is used to
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draw the parameters and the state-variables jointly by drawing them one conditional on the

other - first the state-variables and then the parameters.

p(µ|v,Θ, y)

p(v|µ,Θ, y)

p(Θ|µ, v, y)

They can be further broken down to draw p({ϑq}|{ϑc}, · · · ) or p(Θi|Θ−i, · · · ), where Θ−i is

the set of Θ modulo the i-th element. Notice that in the presence of the yield curve in the

observation equation, we do not have closed form posterior distribution for any parameter.

For example, for the i-th parameter, say the regression coefficients (e, d) in (19), the posterior

distribution looks like

p(e, d|Θ−(e,d), µ, v, y) = p(e, d)p(µ|(e, d), v,Θ−(e,d))p(y|(e, d),Θ−(e,d), µ, v, y)

The first term in the posterior distribution is the prior on the regression coefficient whereas

the second term is the likelihood conditional on the expected growth rates, µ. The third

term is the likelihood conditional on the yield curve. Notice that the parameters (e, d) enter

into the yield equation very non-linearly through the no-arbitrage restriction in the model

imposed in {m0, · · · , m3} in (18). The effect of the prior distribution on the error term of

the yields - ετ is now clear. Under the tight setting, the posterior distribution of (e, d), or

on any parameter, will be strongly influenced by the likelihood of yield curve. Under the

loose setting, the posterior distribution of (e, d) will be determined by the time-series of the

macroeconomic fundamentals.

There is another important issue in the inference of these parameters. Without the bond

equation - i.e., if the state-space was estimated without the yield curve, then closed-form

solutions are available. In the presence of the yield curve, no known posterior distribution
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(or proposal) of the parameters is available. As such, using random-walk Metropolis, as is

frequently done in the finance literature, may not always “work” for all parameters. See Chib

and Ergashev (2008). For some parameters, like the regression coefficients, the random-

walk Metropolis works fine, but not for others like the volatility of volatilities εc and εq, the

correlations ρ1 and ρ2, or the preference parameters. In these instances, we implement a

Gibbs sampler on a grid. For the volatility of volatilities, the grid is chosen based on the

posterior distributions of these parameters from the macroeconomic data, whereas for the

correlations the grid is (−0.99, 0.99). For the preference parameters (risk-aversion and time-

preference), we impose the left boundary at 0 because they cannot be negative. The details

of the estimation methodology is provided in Appendix B.

The next step is to draw the growth rates µ|v,Θ, y which is a linear filtering problem

since the growth rates µ enter linearly in the yield curve and macroeconomic growth rates

(18) and their transition densities are also linear (19). The Bayesian version of Kalman

filter that is used to draw the growth rates is called Forward Filtering Backward Sampling

(FFBS) that is due to Carter and Kohn (1994) and Fruhwirth-Schnatter (1994), and is also

used by ADP (2007). A small distinction here is the correlation in the error terms between

the observation (18) and state equation (19). We resolve it by orthogonalizing (19) by using

the fact that Ut+1|Wt+1, v is still normally distributed, and then the standard FFBS filter

with independent error terms follow. Finally, we filter v|µ,Θ, y which is a non-linear filtering

exercise since the conditional volatilities enter non-linearly in both the yield curve and the

macroeconomic dynamics. In order to filter these conditional volatilities, we generalize the

logic of FFBS used for the growth rates to a non-linear setting. Details are available in the

Appendix.
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2.3 Data and Prior Specification on ετ

The data for the empirical part comes from the post-war US aggregate macroeconomic series

from 1959-2005 sampled monthly. Aggregate per-capita real consumption data comes from

Bureau of Labor Statistics (non-durables and services) divided through by a population

series to make it per-capita consumption. US CPI data comes from International Financial

Statistics. Yield data comes from the Fama-Bliss file obtained from CRSP on 1-5 year bonds.

Notice that the observation equation of this state-space dynamics contains both yields

and macroeconomic time-series. As a first-pass, we first estimate the macroeconomic state-

space alone without the yields. This allows us to form valuable prior opinion on the entire

parameter space except for the preference parameters. In this case, all the posterior distri-

butions of parameters are known in closed form, and one can draw them with computational

ease. Then, these posteriors can be used as priors when we bring in the full state-space for

which no known posteriors (or proposals!) are known.

To gauge the prior on the observation error on the yields - ετ , the data on yields provide us

some guidance on what would be considered a “tight” or “loose” fit. The standard deviation

on all monthly yields is roughly 22 basis points. Given this fact, we motivate our prior on ετ

the following way. The prior on ετ is chosen to be inverted chi-square with hyper-parameters

such that the posterior distribution of ετ is centered at 0.00032 in the tight setting, 0.00202

for loose setting and 0.00102 for the joint setting. The hyper parameters are also picked in

a way such that the distribution of ετ in each case is tight around their respective means.

The tight prior on ετ seeks to fit the yield curve very tightly a la a statistical 4-factor

Gaussian model within a 3 basis point standard deviation. Clearly, this prior specification

will draw parameters and latent variables that will correspond to a very tight fit with the

yield curve mimicking a statistical factor model. On the other end, the loose prior setting

fits the yield curve very loosely and draws parameters and latent variables mostly out of the

macroeconomic fundamentals. Thus, this prior setting essentially forsakes information from
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the yields and seeks to fit the macroeconomic fundamentals. The setting of most interest

- the “joint” prior, seeks to mix information from the yield curve and the macroeconomic

fundamentals jointly. Since it is not fitting the yield curve too tightly this prior setting can

elicit information from both yields and the macroeconomic fundamentals.

In Bayesian parlance, the role of ετ is to provide shrinkage. Under the tight prior setting,

the state-space shrinks towards the yield curve and provides inference on parameters and

state variables based on the yield curve. Under the loose prior setting, the system shrinks

towards the macroeconomic fundamentals, and elicits parameters and state-variables from

the macroeconomic fundamentals. The joint setting shrinks towards both and pulls in in-

formation from both the yield curve and the macroeconomic fundamentals. This framework

is currently missing in the macro-term structure literature. At the heart of any macroeco-

nomic yield curve, there is both macro-dynamics and an yield curve that is derived from

it based on no-arbitrage. There is a clear tension between parameters/state-variables that

drive macroeconomic time-series and the corresponding yield curve. As such, any empirical

study must address this tension formally and this paper seeks to understand what happens

if we start to shrink from a statistical model of the yield curve (the tight prior restriction)

to a setting that brings in macroeconomic fundamentals (the joint prior restriction).

3 Empirical Findings

In order to gauge the parameters of the macroeconomic time-series, we estimate the state-

space without bonds and without any prior information. This gives us indication on where

the parameters of the underlying macro dynamics lie. Then we bring in the yield curve,

and execute the three different prior settings. For each prior specification of the Metropolis-

Hastings algorithm, we run the markov chain for 25000 iterations and discard the first 15000

for burn-in, and form our posterior distribution about parameters and latent variables based

on the remaining 10000.
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The No Bonds column of Table I gives us indication of what the underlying parameter

space looks like without any prior information and without the yield curve. This gives us good

a good prior distribution of parameters for full analysis with the yield curve. Closed-form

posterior distributions are available for the No Bonds case facilitating the task of obtaining

posterior draws of the parameter space. The off-diagonal terms of the growth rate VARs

reveal that there is a strong feedback effect. High expected inflation lowers future expected

consumption growth rate, whereas the effect of high growth rate on future expected inflation

is inconclusive as the estimate of α1
q is large but has a wide posterior interval. The conditional

volatilities are fairly autoregressive with the autocorrelation parameter being 0.8551(0.8567)

for conditional volatility to expected consumption growth (expected inflation). The long-

run average of the conditional volatility in expected consumption growth rate is β0
c

1−(1−β1
c )

=

0.0004
1−0.8551

= 0.0027 whereas the average conditional volatility in expected inflation is
β0
q

1−(1−β1
q )

=

0.0002
1−0.8567

= 0.0014. In the sample, the volatility of monthly consumption growth is 0.0036 and

the volatility of monthly CPI growth is 0.0031. Thus, the volatility of the expected growth

rates of both quantities - consumption and CPI, is smaller showing that the growth rates

are substantially smoother - especially for inflation, than the observed series. Furthermore,

the volatility of the conditional volatilities are εc = 0.0014 and εq = 0.0009 showing that the

conditional volatilities of the growth rates are further incredibly smooth. This is expected

from aggregate macroeconomic series, even if they are sampled at a monthly frequency. Now

let us augment the state-space and add the structurally determined yield curve and see how

these parameter estimates and state variables change.

First, we look at the loose setting. Naturally, under this prior the parameters and the

state-variables that are estimated will not be strongly influenced by the yield curve but by

the macroeconomic variables. In Bayesian parlance, the parameters shrink more towards

the macroeconomic growth rates than towards the yield curve. Naturally, the parameter

estimates do not differ very much from the No Bonds setting. The only major distinction

is that the volatility of consumption and price growth are somewhat smaller compared to
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the No Bonds case suggesting that the state-variables and parameters fit the macroeconomic

series very tightly. Figure 1 and Figure 3 present the growth rate state-variables {µc} and

{µq} that are obtained from the loose prior setting using FFBS. The median fits are very

tight with the underlying macroeconomic variables, and the 2.5-97.5 quantiles do not depart

much further from the data. But, this is to be expected. The loose prior setting was designed

not to “shrink” towards the yield curve, but towards the macroeconomic series. Therefore,

the underlying parameters imply states that match the macroeconomic series very closely.

The conditional volatilities of these growth rates are shown in Figures 5 and 6. They are

essentially constant! The conditional volatilities of the growth rates that are implied by

the macroeconomic variables are minute in size and essentially non-stochastic. This is a

good test that our non-linear filtering methodology to extract the conditional volatilities is

“working” because we expect these macroeconomic volatilities to be small and stable. As

expected, the fits with the yield curve are poor. Figures 9-11 show that the state-variables

and parameters obtained from the loose settings provide very poor fit with the time-series

of yields. The dotted lines in Figures 9-11 show that the time-series of yield curve implied

by the state-variables and parameters of the loose setting completely fail to match the time

variation in the yield curve. Whereas the median posterior estimate goes through the center

of the data, the setting here simply cannot generate enough volatility to capture the time-

series variability of the yields. Table III shows the posterior distribution of pricing errors for

the loose setting. For monthly yields, the loose setting is off on average by 16 basis points

for the 1-year yield to 14-basis points for the 5-year yield, which is quite a large error on

monthly yields. To sum up, the state-variables and parameters that capture the time-series

of the macroeconomic variables simply cannot generate the variability needed to capture the

time-series variation in observed yields. The conditional volatilities of the growth rates -

which were responsible for the non-linearity in the yield curve and generating time-varying

risk-premia, simply isn’t volatile enough to create any meaningful time-series variation in

yields.
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The tight setting shifts our attention to the bonds. It fits the yield curve within a

spread of 3 basis points, which given the standard deviation of the yields, is an attempt to

fit the yield curve very tightly. The macroeconomic series are still part of the state-space,

but since this prior setting puts so much emphasis on the yield curve, the parameters and

the state variables are influenced strongly by the latter. Again, figures 9-11 show how the

tight setting does in fitting the yield curve over the loose setting. The fit is almost perfect!

The underlying parameters and the state-variables imply an yield curve that lines up almost

perfectly with the data. The posterior median fit is almost flawless as the underlying state-

variables generate all the variability that is needed in order to fit the yield curve. The median

pricing error for the tight setting is between 3 basis points for the 2-year yield to 1.5 basis

points for the 1-year yield suggesting a near perfect match. But, at what cost?

This astronomical improvement in fitting the yield curve comes at a substantial price

with regards to fitting the underlying macroeconomic series. The bottom panels of Figures

2 and 4 show the posterior distribution of the growth rates that were supposed to have been

expected consumption growth and expected inflation. Both fail dismally in bearing any

resemblance to the underlying macro series. The bottom panel of Figure 2 produces what

should have been filtered and smoothed estimates of expected consumption growth. The

filtered estimates look anything but that. In fact, the time-series of this “factor” - high in the

early 80s, stable in the 90s, and low and negative between 2000-2005, suggests that the yield

curve is artificially creating a factor that has time-series properties of US inflation in order to

fit the yield curve. Figure 4 is even more radically different. What is supposed to be filtered

and smoothed estimates of expected inflation doesn’t even come close to it. In fact, the time-

series of the second growth rate “factor” is simply something that is negatively correlated

with price growth and is the opposite of expected inflation. Similarly, Figures 5 and 6

show the posterior median of the conditional volatilities of expected consumption growth

and expected inflation. The tight fit with the yield curve implies that the corresponding

conditional volatilities are large with huge time-series variation that changes sign, and most
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importantly, bear no resemblance with the almost non-stochastic conditional volatilities that

the macro series imply in the loose setting. This is yet another test of the non-linear filtering

technique. We know from the loose setting that we need state variables that are volatile in

order to match the yields. What helps us to fit the yields are these conditional volatilities

that enter non-linearly and are highly volatile.

What is happening is endemic to all reduced form term-structure models. One can invert

the yield curve in these pure factor models and can produce a tight fit and generate a time-

series of factors. However, these factors are not easily interpretable and not tied-down to

any economic fundamentals. For example, the yield curve in (14) can be interpreted as

a 4-factor non-linear term structure model where all the factors are Gaussian. What is

produced through the tight prior setting is a strong fit with the yield curve a la a reduced

form setting which forsakes all relationship to a macroeconomic term-structure model that

also needs to address the underlying economic setting of macro dynamics and preferences of

agents exposed to these shocks. The tight setting pays no attention to the latter and simply

generates a time-series of “factors” to do what factor models do best, i.e. generate fits. But,

the corresponding factors - in this case expected inflation and expected consumption growth

along with the stochastic conditional volatilities of these variables, do not look anything like

the latent factor dynamics extracted from the loose setting. The only conclusion we can

draw from the tight setting is that it produces a strong fit but to be able to do so, the

corresponding growth rates have no bearing with the underlying economic setting.

The setting in between the loose and the tight is the joint setting which attempts to

shrink towards both the macroeconomic fundamentals and the yield curve, and in doing so,

tries to extract information from both. The median pricing error in this case is 10 basis

points, which is not as strong as 3 basis points for the tight case, but not as loose as 20

basis points for the loose prior case. Thus, the fits with the yield curve that this prior

specification generates is in between the loose and the tight case, but definitely closer to

the tight . Figures 9-11 show that even if the fits are not as close as the tight prior setting,
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they are substantially better than the loose setting. The fits in the joint setting capture all

the time-series variation in the underlying yield curve, but do not fit them as closely as in

the tight setting. The median pricing errors in the joint setting range from 7.6 basis points

for the 1-year yield to 3.5 basis points for the 5-year yields. Again, the pricing errors are not

as small as the tight setting, but clearly better than a factor of 2 over the pricing error of

the loose setting.

At the same time, this setting provides substantial better fit with the macroeconomic

data. Figures 2 and 4 show the same time-series of expected consumption growth and

expected inflation from the joint setting in the top panel. The time-series of the growth rates

reveal that the joint setting does a much better job in matching the time-series properties

of the underlying macro series than the tight setting. It produces expected consumption

growth and expected inflation that are much closer to their realized counterpart than the

tight setting. Naturally, the fits with the macroeconomic series is not as strong as the

loose setting, but they are substantially closer than the tight setting. The time-series of

the conditional volatilities also show shrinkage towards the macroeconomic series. Figures 5

and 6 show that the conditional volatilities of the growth rates are much closer to the stable

conditional volatilities of the loose setting than the wildly fluctuating ones of the tight

setting.

An important caveat is in order. Even if the joint setting provides a superior fit with

both the yield curve and macroeconomic series, it seems that there is a clear structural

break in the early 1980s. To get closer to the high yields of the early 1980s, expected

inflation and expected consumption growth deviate substantially from the underlying macro

series. Similarly, from 2000-2005, the joint setting essentially produces expected deflation

in order to track the low yields in that period. In terms of the time-series of the stochastic

volatilities, the conditional volatility of expected inflation increased substantially in the early

1980s (Figure 6) and dropped soon after suggesting that the structural break in expected

inflation resulted from the sudden increase in conditional volatility of expected inflation
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which is needed to track the high yields of the early 80s.

Overall, however, the joint prior setting - which draws information from both the macroe-

conomic data and the yield curve performs well in matching both yields and the underlying

macroeconomic fundamentals. The joint setting illustrates the challenge of any macro-

economic yield curve system where the goal is to draw joint inferences on macro fundamen-

tals and the yield curve that are connected by preferences and/or no-arbitrage restrictions.

The setting here addresses this point with the choice of priors to elicit information from one

or the other, or both. As we show here, the prior on the joint setting that draws information

from the two different series can accomplish both - it produces substantially better fit with

the yield curve than the loose setting, and substantially better fit with the macroeconomic

growth rates than the tight setting.

3.1 Risk Premia:

Now we show where mixing information from both the yield curve and macroeconomic fun-

damentals is most valuable. Taking the posterior parameter distributions and state variables,

we construct the risk and term premia offered on bonds. We show that the joint setting

which elicits information from both the yield curve and the macroeconomic fundamentals

is able to produce premia that is better able to address predictability than the tight or

loose setting. From the data on monthly yields, we construct the return data by taking a

τ -period bond and sell it one year later as a τ − 1-period bond. We construct excess return

by subtracting the yield on the 1-year bond whose rate of return is immediate. At the same

time, we construct the time-series of the posterior distribution of risk-premia for each bond

with maturity τ following the expected excess bond return expression

(ρ1γσcB(τ)ϑct + ρ2σqC(τ)ϑqt ) · 12

We multiply it by 12 in order to create annual estimates since our return data is annual.
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The time-series of the median risk-premia for each bond from both the tight and joint

setting is reported in Figures 12-13. First, the risk-premia from the tight setting is simply

too high and too erratic. It shows risk-premia steadily increasing from the 1960s onward

until risk-premia reaches almost as high as 25% for the 5-year bond and 15% for the 4-year

bond in the late 1970s. Then, dramatically, the risk-premia changes sign reaching well below

-25% on the 5-year bond and slowly coming back up in the later part of the sample. The

tight setting fits the yield curve very tightly, but generates risk-premia that are simply too

high. In fact, the premia in this case is strongly negatively correlated with observed return.

Table IV shows that for the tight setting, the correlation between the risk-premia shown in

Figure 12 and the observed excess return on the bond is as high as -0.56 for the return on

a 5-year bond to -.60 for the return on a 2-year bond. The tight setting was very good in

terms of producing fits, but it failed completely in living up to other model implications like

predictability. However, the time-series of risk-premia shows a very interesting pattern. It

is exclusively positive and rising in the pre-Volcker regime. The early 1980’s with new Fed

policy completely reverses the sign on the premia and it has slowly increased since then.

The results from the joint setting are more promising. Constructing the same time-series

of premia from above using the posterior distribution of parameters and state-variables from

the joint setting, we produce the risk and term premia in Figure 13. We notice that the risk-

premia is much smaller than the tight setting, but it correlates positively with the observed

return. The third column of Table IV shows that the time-series of risk and term premia

implied by the parameters and state-variables of the joint setting produces correlation of

0.19 with the return on a 2-year bond to 0.22 with the return on 4-year bond. Moreover,

the risk-premia from the joint setting can also generate economically significant R2’s. Table

V shows that when the bond excess return is regressed against the risk-premia generated

from the joint setting, the median R2’s that are generated range from 3.5-5% with their

posterior distribution rising as high as 8-10% for bond returns of maturity 2-5 years. We

compare our R2’s against ADP (2007) and the full posterior distribution is well within reach
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of the R2’s that are generated in their work. This is significant due to the strong parameter

restrictions imposed in our setting that ties down the risk-premia coefficients to preferences

and macroeconomic dynamics.

To understand the different predictability results across the different prior settings, let’s

regress the conditional volatilities of expected inflation ϑqt and expected consumption growth

ϑct that we filtered from the yield curve to bond excess returns. The coefficients are shown

in Table VI. Changes in conditional volatility of expected inflation is strongly negatively

correlated with excess bond return in both the joint and tight setting and the effect is

larger for higher maturities. However, the predictability coefficients are not free parameters

for us, since in (15) we have pinned down these coefficients through preferences, underlying

dynamics and no-arbitrage. Only the joint setting can match the sign and pattern of the

coefficient (ρ2C(τ)σq) on ϑqt that is presented alongside the regression coefficients.3 They are

negative and decreasing for longer maturities implying that a positive shock to conditional

volatility of expected inflation predicts bond prices will fall, and longer maturity bonds

are expected to have a lower expected excess return as a result of increased volatility than

shorter maturity bonds. The same coefficient that we compute in the tight setting gives us

the wrong sign and the reverse inference - higher conditional volatility to expected inflation

is supposed to increase expected return and longer maturities have higher expected excess

return than shorter maturities. The effect of conditional volatility of consumption growth

on expected bond excess returns is not conclusive since the coefficient is insignificant in the

joint setting and is negatively correlated with bond returns in the tight setting, but the

effect is not as strong as conditional volatility of expected inflation.4

The reason the joint setting gets the correct sign on the predictability relationship is

because it gets the right sign on the loading C(τ) - which was the coefficient on expected

3These values are simply taken from Table II.
4In these regressions, the R2’s are substantially higher than the R2’s in Table 5, but we do not report

them since these regressions do not enforce the parameter restrictions which is the purpose of our study.
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inflation in the bond pricing relationship ( 13). As such, we should expect C(τ) to be

negative, or −C(τ)/τ , i.e. the coefficient on expected inflation in the yield curve, to be

positive. The bottom panel of Figure 16 confirms that hypothesis. It also confirms that the

tight setting gets the wrong sign on C(τ). The reason the two settings get two different

signs on the loading has to do with how much each shrinks towards the macroeconomic

setting. Since the joint setting shrinks substantially to the macroeconomic variables, it is

able to filter expected inflation from CPI data. On the other hand, since the tight setting

disregards the macroeconomic series completely, the expected inflation series it produces

is completely different (and, in fact, orthogonal to expected inflation). That is essentially

shown in Figure 4. Since the joint setting is better able to identify expected inflation, the

corresponding loading it generates on expected inflation (−C(τ)/τ) from the yield curve

relationship (14) is positive and increases with maturity as is shown in the bottom panel

of Figure 16. Since the tight setting cannot identify expected inflation from CPI data (it

disregards information from the macro series), it doesn’t get the right sign on the loading

of this factor and eventually on premia. Precisely which underlying variable is causing this

phenomenon is difficult to address, but as the ODE’s satisfying the loadings show in the

Appendix, it is the autocorrelation parameters of the growth rates and risk-aversion which

are involved in producing this differential effect.

The fact that the loose setting is not able to produce any conclusive relationship between

returns and premia is because the macroeconomic series is very poor in identifying the

correlation parameters ρ1 and ρ2 which govern the correlation between expected consumption

growth (expected inflation) and observed consumption (CPI) growth. The loose setting

infers that these parameters are indistinguishable from zero, and furthermore the latent

conditional volatilities are virtually constant. Hence the correlation of premia extracted

from the loose setting with actual return is essentially zero.

Another caveat is in order. Whereas the joint setting can produce premia that correlates

with actual bond returns, it generates premia that is small in magnitude. At most, the
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median premia is .5%, and it can generate a negative premia as low as -5%. However, small

and negative premia is not unexpected. In fact, Veronesi and Yared (2000) also show in their

equilibrium setting small and negative term premia before their “inflation convexity bias”

correction due to learning. We can generate substantial premia from the tight setting, but it

gets the opposite sign in the predictability relationship and is not in spirit of a macroeconomic

term-structure model because it disregards the underlying macroeconomic information.

3.2 The effect of non-linearity on yields

The effect of non-linearity is severe in the conditional volatility of expected inflation, par-

ticularly for the long maturity bonds. The bottom panel of Figure 18 shows the loading on

the ϑq
2

t term. If the size of the conditional volatility of expected inflation is big (sign doesn’t

matter here), then long maturity yields suffer more than short maturity yields. However,

the effect of the non-linearity of the conditional volatility to expected consumption growth

is much smaller in magnitude and its effect on the yield curve is not monotonic.

3.3 Parameter Estimation:

Ultimately, the three settings are distinguished by the parameters of the underlying dynam-

ics and preferences (like risk-aversion). The tight setting, which ignores the macroeconomic

variables, estimates the volatility of consumption growth, σc, to be 0.0159 in monthly con-

sumption. That amounts to 0.0159 ·
√

12 = 5.5% volatility of yearly consumption growth

which clearly indicates that the tight setting absolutely disregards the underlying macro

series. The volatility of price growth does even poorly with a monthly estimate of σq to be

0.08. Naturally, the premia generated from the tight setting is much higher than the other

two settings.

The correlation parameter ρ1 (ρ2) that measures correlation between expected consump-

tion growth (expectation inflation) and observed consumption (CPI) growth are very different
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under the yield curve dynamics than the macro dynamics. For example, the macroeconomic

series offer no conclusive inference about these variables since they are both indistinguishable

from zero. However, the yield curve is very informative about these variables. Under the

tight (or joint ) setting ρ1 (ρ2) is strictly negative (positive) implying a negative (positive)

relationship between consumption growth (price growth) and expected consumption growth

(expected inflation) as inferred by the yield curve. The reason the yield curve is informative

about these parameters is because the tight (or joint ) setting is looking to extract premia

from the yield curve in order to generate fits with the yield curve. One way to infer premia

is to strongly tie down these correlations which the prior setting is helping to do. One can

think of the three different settings as different implications of the failure of Expectations

Hypothesis. The loose setting that extracts no statistically significant premia displays the

features of the Expectations Hypothesis, but it cannot match the yields. The tight setting

fits the yields but produces an extreme rejection of the Expectations Hypothesis. The joint

setting fits the yields reasonably well, and it also extracts reasonable premia showing the

failure of Expectations Hypothesis.

The effect of the prior is also visible through the estimation of the risk-aversion parameter

γ. Figure 15 plots the posterior distribution of γ under all three prior setting. The tight

setting implies that posterior distribution of risk-aversion is between 4.5-5, which is again

one of the reasons why premia is much higher for this prior setting. At the same time, the

loose setting is reporting risk-aversion much lower between 0.25-0.75 precisely because it is

not getting enough information from bond prices due to the loose prior that we imposed.

The joint setting which draws moderate amount of information from bonds infers γ between

3.5-4.

As discussed above, one can also test the Fisher hypothesis of independence of real interest

rates and expected inflation. In this setting αc2 6= 0 implies that the long run mean of the

real rate is determined by expected inflation. The top panel of Figure 14 shows that the

posterior distribution of αc2 is negative, suggesting that high expected inflation increases
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expected consumption growth which positively affects the real rate. This puts it at odds

with the Mundell-Tobin effect. The impact of adding information from the yields on the

same parameter is obvious in the bottom panel. Clearly the presence of the yields tighten

the parameter space. Whereas the posterior distribution of αc2 without the yield is fairly

wide, the introduction of the yield curve is very informative on where the parameter should

lie and pins it within a small sub-interval of the posterior distribution of the No Bonds case.

Whereas there is a small probability in the No Bonds case for Mundell-Tobin effect to hold

(positive αc2), the information from yields make it conclusive that this parameter is negative.

3.4 Inflation Risk-Premia:

Following Veronesi and Yared (2000), we define inflation risk and term premia to be the

difference between expected excess return of a nominal bond and expected excess return of

a real bond. It is given by the expression

IRP (τ) = ρ1γσc(B(τ)− B̂(τ))ϑct + ρ2σqC(τ)ϑqt

Taking the full posterior distribution of parameters and latent conditional volatilities from

the joint prior setting, we construct the posterior distribution of inflation risk premia across

the different maturities. We report the median time-series estimates in Figure 19. Just like

risk-premia itself, we find that the magnitude of inflation risk premia across the different

maturities is small and mostly negative. The exact sign and magnitude of inflation risk

premia is widely debated in the literature. Negative and tiny inflation risk-premia has been

uncovered in Ravenna and Seppala (2007) and Veronesi and Yared (2000), whereas Buraschi

and Jiltsov (2005) uncover high inflation risk-premia as an important explanatory variable

for deviations from the expectations hypothesis. In our case, the joint setting implies that

the inflation risk-premia has been fairly constant in the time-series. It is mostly negative and

the early 1980s saw a big negative jump in the inflation risk-premia. The evidence suggests
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that nominal bonds offer no reward for agents exposed to inflation risk. It is most likely the

case that nominal bonds are beneficial for the agent to offer diversification benefit in his/her

extended portfolio.

4 Conclusion

We propose a a macroeconomic no-arbitrage yield curve system that seeks to address both

no-arbitrage yields with underlying macroeconomic fundamentals connected by preferences

that puts further restriction between macro dynamics and risk-premia. We estimate a joint

state-space of the quadratic yield curve with underlying macroeconomic fundamentals using

a Bayesian MCMC algorithm that estimates parameters and state-variables by using prior

information to elicit information from either the macroeconomic growth rates or the yield

curve, or both. We conclude that effectively using priors to elicit information out of both

yields and macroeconomic fundamentals have the advantage that it can explain bond return

predictability much better than if we only looked at yields or macroeconomic fundamentals

separately. Our analysis is in partial equilibrium, thereby extending the macroeconomic

term-structure literature by imposing restriction on the risk-premia that provides the con-

nection between macro dynamics and no-arbitrage bond prices under failure of Expectations

Hypothesis.
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Table I:Posterior medians of parameter estimates along with the 2.5-97.5 quantile of each
parameter distribution that are obtained from the markov chain generated from the MCMC
sampling. Each Gibbs sampler is run for 25000 iterations and the first 15000 draws are
discarded. The estimates presented here are from the last 10000 draws. “No Bonds” repre-
sents parameters estimates without the yield curve. “With Bonds” respresents parameters
estimated with the yield data of 1-5 years. Parameters are reported in monthly quantities.
The tight model is with pricing error (ετ ) of 3bp, the loose prior with 20bp and the joint
prior with 10 basis points.

No Bonds With Bonds
Tight Loose Joint

αc0 0.0025 0.0068 0.0035 0.0016
(0.0027,0.0044) (0.0067,0.0070) (0.0032,0.0037) (0.0014,0.0019)

1− αc1 -0.4863 -0.5131 -0.4711 -0.5190
(-0.6521,-0.2736) (-0.5157,-0.5100) (-0.4749,-0.4691) (-0.5247,-0.5074)

αc2 -0.2551 -0.3877 -0.2487 -0.3167
(-0.4646,-0.0602) (-0.3881,-0.3869) (-0.2503,-0.2471) (-0.3573,-0.2867)

αq0 0.0005 0.0005 0.0008 0.0004
(-0.0002,0.0017) (0.0003,0.0007) (0.0007,0.0010) (0.0003,0.0005)

αq1 -0.1019 -0.3021 -0.0986 -0.3409
(-0.5610,0.1577) (-0.3048,-0.2992) (-0.1024,-0.0925) (-0.3028,-0.3392)

1− αq2 0.9009 0.9528 0.9025 0.9613
(0.7825,0.9705) (0.9311,0.9612) (0.8819,0.9332) (0.9602,0.9625)

βc0 0.0004 0.0033 -0.0024 -0.0002
(0.0002,0.0005) (0.0028,0.0035) (-0.0041,-0.0011) (0.0005,0.0013)

1− βc1 0.8551 0.8635 0.8597 0.8602
(0.8228,0.8867) (0.8430,0.8838) (0.8583,0.8616) (0.7974,0.8805)

βq0 0.0002 -0.0002 0.0008 0.0003
(0.0001,0.0003) (-0.0002,-0.0001) (0.0007,0.0010) (0.0002,0.0004)

1− βq1 0.8567 0.8576 0.8568 0.8588
(0.8244,0.8893) (0.8376,0.8880) (0.8549,0.8574) (0.8291,0.8647)

εc 0.0014 0.0019 0.0013 0.0010
(0.0013,0.0016) (0.0018,0.0021) (0.0012,0.0013) (0.0009,0.0012)

εq 0.0009 0.0019 0.0015 0.0012
(0.0008,0.0010) (0.0017,0.0020) (0.0014,0.0016) (0.0009,0.0019)

σc 0.0033 0.0159 0.0013 0.0088
(0.0028,0.0035) (0.0151,0.0165) (0.0012,0.0015) (0.0082,0.0090)

σq 0.0028 0.0767 0.0006 0.0100
(0.0026,0.0032) (0.0733,0.0800) (0.0006,0.0006) (0.0065,0.0119)

ρcq -0.0174 0.5378 -0.1491 -0.0024
(-0.0356,-0.0047) (0.5500,0.3414) (-0.1807,-0.1177) (-0.0324,0.0266)

ρ1 0.0331 -0.6760 0.0487 -0.5454
(-0.024,0.1161) (-0.6942,-0.6699) (-0.0280,0.1284) (-0.5470,-0.5442)

ρ2 0.0502 0.4993 0.2001 0.5409
(-0.046,0.1506) (0.4564,0.5294) (0.0201,0.3251) (0.5401,0.5422)

γ - 4.7080 0.4534 3.7442
- (4.6504,4.8041) (0.2241,0.6341) (3.5897,3.8183)

φ - 0.0070 0.0060 0.0170
- (0.0100,0.0188) (0.0010,0.0100) (0.0150,0.0198)
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Table II:Annual estimates of loadings on the risk-premia in (15). Given the distribution of param-

eter values in Table 1, the loading on the risk premia for ϑct (ρ1γσcB(τ) · 12) and ϑqt (ρ2σqC(τ) · 12)

are computed for each bond of maturity τ . The median level, as well as the 2.5-97.5 quantiles, of the

loadings are reported. The tight model is with pricing error (ετ ) of 3bp, the loose prior with 20bp

and the joint prior with 10 basis points.

τ tight loose joint

ϑc ϑq ϑc ϑq ϑc ϑq

1 2.0051 0.7713 0.0427 -0.0107 0.3809 -0.2055
(1.7964,2.2394) (0.5656,0.8852) (-0.0269,0.1422) (-0.0178,-0.0011) (0.3090,0.4144) (-0.2351,-0.1914)

2 2.4045 2.3858 0.1059 -0.0147 0.1534 -0.4709
(2.1223,2.7071) (1.9470,2.5698) (-0.0589,0.2893) (-0.0245,-0.0016) (0.0717,0.1991) (-0.5316,-0.4354)

3 2.9770 4.6975 0.1280 -0.0162 -0.1815 -0.8651
(2.6162,3.3532) (4.0535,4.9073) (-0.0710,0.3514) (-0.0271,-0.0017) (-0.2638,-0.1215) (-0.9531,-0.8017)

4 3.7967 7.9906 0.1363 -0.0168 -0.6769 -1.4484
(3.3671,4.2470) (7.2593,8.3012) (-0.0762,0.3761) (-0.0281,-0.0018) (-0.8097,-0.5978) (-1.5717,-1.3479)

5 4.9768 12.6864 0.1395 -0.0170 -1.3953 -2.3060
(4.5015,5.4803) (12.1079,13.3425) (-0.0782,0.3863) (-0.0284,-0.0018) (-1.7174,-1.2539) (-2.5977,-2.1426)

Table III: This table reports the posterior median and the 2.5-97.5 quantile of pricing error
in basis points on monthly yields. The tight model is with pricing error (ετ ) of 3bp, the
loose prior with 20bp and the joint prior with 10 basis points.

τ tight loose joint
1 1.5723 16.2781 7.5793

(0.9856,1.9250) (12.1895,19.2196) (5.5662,9.9867)
2 2.8993 15.3845 7.2016

(1.4287,3.6529) (10.1819,21.6840) (6.9078,9.9985)
3 2.2774 15.7334 5.6390

(1.1876,3.8901) (11.1671,23.1775) (3.470,8.8119)
4 2.8703 14.1662 5.3388

(1.2432,3.5490) (9.8751,22.1446) (4.2179,8.8201)
5 1.9486 14.1819 3.4455

(1.0382,3.6674) (8.8653,21.3884) (2.1890,8.8659)
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Table IV:This table reports correlation of bond return and risk-premia from each prior set-

ting. First, we construct a series of yearly bond returns, by taking an n year bond at time t

and sell it the following year as an n − 1 year bond. Our sample in this case is Fama-Bliss

2-5 year yields from 1959-2005. Then, we construct the annualized risk-premia from ( 15) -

(ρ1γσcB(τ)ϑct + ρ2σqC(τ)ϑqt ) · 12 by taking the posterior distribution of parameters and state vari-

ables from each setting. We compute correlation of each time-series in the posterior distribution

with the bond return computed from the sample. The 2.5-97.5 quantile of the distribution of

correlations, along with the median, is reported for each prior setting. The tight model is with

pricing error (ετ ) of 3bp, the loose prior with 20bp and the joint prior with 10 basis points.

τ tight loose joint

2 -0.6090 0.0316 0.1901
(-0.6491,-0.5772) (-0.1080,0.1587) (0.0655,0.2861)

3 -0.5802 0.0294 0.2201
(-0.6345,-0.5392) (-0.1082,0.1569) (0.0844,0.3013)

4 -0.5730 0.0289 0.2225
(-0.6330,-0.5290) (-0.1069,0.1560) (0.0788,0.3100)

5 -0.5606 0.0300 0.2191
(-0.6225,-0.5154) (-0.1061,0.1561) (0.0711,0.3100)

Table V:In this Table we present the posterior median and 2.5-97.5 quantile of the distribution of

R2’s from predictability regression. First, we construct a series of yearly bond returns, by taking

an n year bond at time t and sell it the following year as an n − 1 year bond. We compute

excess return by subtracting off the yield on the 1-year bond. Our sample in this case is Fama-

Bliss 2-5 year yields from 1959-2005. Then, we construct the annualized risk-premia from (15)

- (ρ1γσcB(τ)ϑct + ρ2σqC(τ)ϑqt ) · 12 by taking the posterior distribution of parameters and state

variables from the joint setting. Then we regress the bond return at year t+ 1 on the risk-premia

computed at year t and report the R2’s from each setting. For comparison purposes, we also provide

the R2’s from ADP(2007) who also look at Fama-Bliss bonds in a similar time-period in quarterly

frequency.

τ joint ADP(2007)
2 0.0361 -

(0.0046,0.0818)
3 0.0484 0.096

(0.0075,0.0908)
4 0.0495 -

(0.0064,0.0961)
5 0.0480 0.096

(0.0055,0.0961)
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Table VI:This table presents the predictability coefficients of regressing excess bond returns on ϑct
and ϑqt that were filtered under joint and tight setting. First, we construct a series of yearly bond
returns, by taking an n year bond at time t and sell it the following year as an n−1 year bond. We
compute excess return by subtracting off the yield on the 1-year bond. Our sample in this case is
Fama-Bliss 2-5 year yields from 1959-2005. Taking the full distribution of the posterior distribution
of filtered state variables ϑct and ϑqt under each prior setting, we regress excess bond return on both
of these filtered series. We report the median and the 2.5-97.5 quantile of the regression coefficient
from the regression

rt+1 = a0 + a1ϑ
c
t + a2ϑ

q
t + ε

Then, we present the median and 2.5-97.5 quantile of the distribution of the corresponding coeffi-

cients from the risk-premia relationship (ρ1γσcB(τ)ϑct + ρ2σqC(τ)ϑqt ) · 12, which is repeated from

Table 2. The top panel presents the joint and the bottom panel presents the tight setting.

joint
τ a1 ρ1γσcB(τ) a2 ρ2σqC(τ)
2 0.5925 0.1534 -1.4057 -0.4709

(-1.3951,2.6179) (0.0717,0.1991) (-2.4483,-0.2808) (-0.5316,-0.4354)
3 1.1318 -0.1815 -3.0606 -0.8651

(-2.4887,4.8042) (-0.2638,-0.1215) (-4.8747,-1.0011) (-0.9531,-0.8017)
4 1.6537 -0.6769 -4.4933 -1.4484

(-3.3271,6.5707) (-0.8097,-0.5978) (-6.9545,-1.6563) (-1.5717,-1.3479)
5 2.1126 -1.3953 -5.6178 -2.3060

(-4.0281,8.0692) (-1.7174,-1.2539) (-8.5989,-2.2256) (-2.5977,-2.1426)
tight

2 -0.5409 2.4045 -0.7145 2.3858
(-0.6392,-0.4208) (2.1233,2.7071) (-0.9940,-0.5107) (1.9470,2.5698)

3 -0.8175 2.9770 -1.4603 4.6975
(-1.0029,-0.6055) (2.6162,3.3532) (-1.9631,1.0718) (4.0535,4.9073)

4 -1.0384 3.7967 -2.1430 7.9906
(-1.3032,-0.7419) (3.3671,4.2470) (-2.7936,-1.6036) (7.2593,8.3012)

5 -1.2283 4.9768 -2.5945 12.6864
(-1.5535,-0.8627) (4.5015,5.4803) (-3.3715,-1.9311) (12.1079,13.3425)
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Figure 1: Filtered and smoothed expected consumption growth Rate from the loose specifica-
tion. The top panel is the median of µct and the bottom is the 2.5-97.5 quantile. The heavy
background is data of monthly consumption growth.
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Figure 2: Filtered and smoothed expected consumption growth Rate from the joint and tight
specification. The top (bottom) panel reports the 2.5-median-97.5 quantile of the posterior
distribution of µct from the joint (tight ) prior setting. The heavy background is data of
monthly consumption growth.
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Figure 3: Filtered and smoothed expected inflation from the loose specification. The top
panel is the median of µqt and the bottom is the 2.5-97.5 quantile. The heavy background is
data of monthly CPI growth.
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Figure 4: Filtered and smoothed expected inflation Rate from the joint and tight specifica-
tion. The top (bottom) panel reports the 2.5-median-97.5 quantile of the posterior distribution
of µqt from the joint (tight ) prior setting. The heavy background is data of monthly CPI
growth.
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Figure 5: Posterior median of the filtered and smoothed conditional volatility of expected
consumption growth ϑct from the tight ,loose and joint setting.
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Figure 6: Posterior median of the filtered and smoothed conditional volatility of expected
inflation ϑqt from the tight ,loose and joint setting.
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Figure 7: The 2.5-97.5 Quantile of the filtered and smoothed conditional volatility of expected
consumption growth.
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Figure 8: The 2.5-97.5 Quantile of the filtered and smoothed conditional volatility of expected
inflation.
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Figure 9: Posterior median time-series estimate of the 2-year yield curve under the three
prior settings.
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Figure 10: Posterior Median of the 4-year yield curve under the three settings.
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Figure 11: Posterior Median of the 5-year yield curve under the three settings.
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Figure 12: Posterior Median of expected return on bonds from the tight setting. Taking
parameter estimates and filtered state variables under tight setting, we form the posterior
distribution of the annual average return of 5-year bonds according to (15) and report the
median.
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Figure 13: Posterior Median of expected return on bonds from the joint setting. Taking
parameter estimates and filtered state variables under joint setting, we form the posterior
distribution of the annual average return of 5-year bonds according to (15) and report the
median.
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Figure 14: Posterior distribution of αc2 used to test the Fisher Hypothesis.
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Figure 15: Posterior distribution of the risk-aversion parameter, γ.
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Figure 16: Loading on expected consumption growth (top) and expected inflation (bottom)
in the yield curve formula (14). Taking posterior estimates from tight and joint setting,
we form the posterior distribution of −B(τ)/τ and −C(τ)/τ and report the median for each
prior setting.
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Figure 17: Loading on conditional volatility of expected consumption growth (top) and ex-
pected inflation (bottom) in the yield curve formula (14). Taking posterior estimates from
tight and joint setting, we form the posterior distribution of −D(τ)/τ and −E(τ)/τ and
report the median for each prior setting.
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Figure 18: Loading on the quadratic term of the conditional volatility of expected consumption
growth (top) and expected inflation (bottom) in the yield curve formula (14). Taking posterior
estimates from tight and joint setting, we form the posterior distribution of −F (τ)/τ and
−G(τ)/τ and report the median for each prior setting.
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Figure 19: Inflation-risk premia (IRP) as defined (17) under the joint setting. Taking the
posterior distribution of parameters and latent variables under the joint setting, we construct
the inflation risk-premia for different maturities and report the posterior median of IRP for
each bond.
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5 Appendix

5.1 Appendix A

Proof of Proposition 2.1
The utility function of the investor is

u(ct) =
c1−γ
t

1− γ

where γ > 1. The nominal pricing kernel is defined as

Mn
t = e−φt

u′(ct)

qt
= e−φt

c−γt
qt

Applying Ito’s Lemma to Mn
t and using (1)-(2), I get

dMn
t

Mn
t

= [−γµct − µqt − φ+
γ(1 + γ)σ2

c

2
+ σ2

q + γρcqσcσq]dt

− γσc dWc − σq dWq

Applying Et[
dMn

t

Mn
t

] = −rnt dt proves the result.

The real interest rate can be obtained by applying the same technique to the real pricing
kernel Mt = e−φtc−γt . In differential form, the real pricing kernel takes the form

dM

M
= −[γµct + φ− 1

2
γ(γ + 1)σ2

c ]dt− γσc dWc

with the real rate rt = γµct + φ− 1
2
γ(γ + 1)σ2

c .
Proof of Proposition 2.2
Given the nominal short rate process in ( 10), the price of a τ = T − t period bond,
P n(µct , µ

q
t , ϑ

c
t , ϑ

q
t ,Θ; τ), where Θ is the entire parameter set, is

Et

[
dP n

P n

]
= rnt dt− Et

[
dMn

Mn

dP n

P n

]

Because of the differential form of the nominal rate process in (10), P n must be a func-
tion of P n(µct , µ

q
t , ϑ

c
t , ϑ

q
t ,Θ; τ) with the initial condition that P n(µct , µ

q
t , ϑ

c
t , ϑ

q
t ,Θ; 0) = 1. An

66



application of Ito’s Lemma leads to

P n
µc(α

c
0 − αc1µct − αc2µqt ) + P n

µq(α
q
0 − αq1µct − αq2µqt ) + P n

ϑc(β
c
0 − βc1ϑct) + P n

ϑq(β
q
0 − βq1ϑqt )− P n

τ

1

2
[P n
µcµcϑ

c2

t + P n
µqµqϑ

q2

(t) + P n
ϑcϑcε

2
c + P n

ϑqϑqε
2
q] = rnP n + ρ1γσcP

n
µcϑ

c
t + ρ2σqP

n
µqϑ

q
t

the solution of which is given by (13). After substituting (13) into the above PDE, I can verify
the quadratic form and obtain the coefficients which solve a system of ordinary differential
equations given by

A′(τ) = αc0B(τ) + αq0C(τ) + βc0D(τ) + βq0E(τ) + ε2cF (τ) +
1

2
ε2cD(τ)2 + ε2qG(τ) +

1

2
ε2qE(τ)2 − k

B′(τ) = −αc1B(τ)− αq1C(τ)− γ
C ′(τ) = −αc2B(τ)− αq2C(τ)− 1

D′(τ) = 2βc0F (τ)− βc1D(τ) + 2D(τ)F (τ)ε2c − γσcρ1B(τ)

E ′(τ) = 2βq0G(τ)− βq1E(τ) + 2E(τ)G(τ)ε2q − σqρ2C(τ)

F ′(τ) = −2βc1F (τ) +
1

2
B(τ)2 + 2F (τ)2ε2c

G′(τ) = −2βq1G(τ) +
1

2
C(τ)2 + 2G(τ)2ε2q

with initial condition A(0) = B(0) = C(0) = D(0) = E(0) = F (0) = G(0) = 0. This is
a non-linear system of ODEs and is solved in groups using an Euler approximation. First
(B,C, F,G) are solved jointly. Then these values are taken to solve (D,E) and finally A.

Real bonds, P r(τ) can be priced very similarly using the real interest rate rt and the
real pricing kernel. It will satisfy another set of ODE’s, Â · · · Ĝ, with boundary condition
Â = · · · = Ĝ = 0.

5.2 Appendix B

This section details the MCMC methodology that is used in the paper. The entire estimation
task can be broken down into filtering the state-variables - µ and v, and parameter estimation
Θ. Θ can be broken down into smaller blocks and estimated one at a time. Estimating them
separately and one conditional on the other ultimately gives the joint posterior density -
p(µ, v,Θ|data).

First we look at filtering the growth rates - µ conditional on {v,Θ|data}. The filtering
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problem looks like

yt+1 = m0 +m1vt +m2v
2
t +m3µt +Wt+1 Wt+1 ∼ N3(0,W )

µt+1 = e+ dµt + Ut+1 Ut+1 ∼ N2(0, Vt)

This is a standard linear filtring problem that can be easily solved by the Forward-Filtering
Backward-Sampling (FFBS) algorithm developed in Carter and Kohn (1994) and Fruhwirth-
Schnatter (1994), except with one twist. The error terms Wt+1 and Ut+1 are correlated with
correlation Σt as is defined in Section 3.1. Thus, when we perform the FFBS we need to be
mindful of this correlation structure which is not there in the original FFBS. We orthogonalize
the two equations using Ut+1|Wt+1 which is still normally distributed and use this conditional
distribution in the bottom equation and proceed with standard FFBS.

Having obtained the time-series of the full growth rates µt, now we move on to estimating
the volatility conditional volatility vt. Notice the state-space is highly non-linear in the
volatility states vt.

yt+1 = m0 +m1vt +m2v
2
t +m3µt +Wt+1 Wt+1 ∼ N3(0,W )

µt+1 = e+ dµt + Ut+1 Ut+1 ∼ N2(0, Vt)

vt+1 = f + gvt + Et+1 Et+1 ∼ N2(0, E)

It is quadratic in the observation equation to reflect that the yield curve is quadratic in the
volatility states and highly nonlinear in the first state-equation. Appendix C generalizes the
arguments of FFBS to filter and smooth the volatility states.

Now we have to estimate the parameter set in Θ. It comprises of regression parameters
- (e, d) and (f, g), volatility parameters - W and E, correlation parameters ρ1 and ρ2, and
utility parameters γ and ρ. Consider the full posterior of (e, d).

p(e, d|Θ−(e,d), µ, v, data) = p(e, d)p(µ|v, (e, d),Θ−(e,d))p(data|, (e, d)Θ−(e,d), µ, v)

When the yields are included in the data, there are no closed-form posterior densities available
for (e, d). We follow a random-walk Metropolis algorithm which proceeds in the following
sense.

• 1. Start with a given (e0, d0).

• 2. Propose a new candidate (e1, d1) ∼ N((e0, d0), S) where S is chosen to be very
“small” so that the chain makes very small progress.

• Accept this new point as the new draw from the posterior distribution with probability

a = min
[
1,

p(e1,d1|Θ−(e1,d1),µ,v,data)

p(e0,d0|Θ−(e0,d0),µ,v,data)

]
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Without the yields, a closed form conjugate prior is multivariate normal which produces
posterior distribution of the regression coefficients to be multivariate normal. The exact
specification is given in Johannes and Polson (2005).

Next, we move on to the volatility of volatility parameters. As usual, in the presence
of bond prices, a closed form solution is not available. In fact, no good proposals are also
available. Thus, we had to resort to a grid, popularly known as Griddy Gibbs algorithm.
We fix a grid for a volatility parameter εc − {ε1c , · · · , εnc } with a flat prior on the grid. At
each point on the grid, we evaluate the posterior distribution,

p(εic|Θ−εic, µ, v, data) = p(εic)p(v|εic,Θ−εic)p(data|εic,Θ−εic, µ, v)

Then draw εc from this grid of densities {p(ε1c), · · · , p(εnc )}. As usual, without the yield data
a conjugate prior is inverted-chi square which produces a closed form posterior distribution
for εc to be inverted chi-square. The exact specification is given in Johannes and Polson
(2005). The same method applies to εq. Other parameters, like the correlations ρ1, ρ2 and
the utility parameters γ and φ have no known posteriors. Whereas γ and φ can only be
inferred from the bond data, ρ1 and ρ2 can be obtained from both the yield curve and the
macroeconomic growth rates. They are sampled via the same Griddy Gibbs algorithm.

The next step is to draw the lower partition of theW -matrix. LetW ′ =
[
σ2
c ρσcσq; ρσcσq σ2

q

]
.

The posterior distribution is the same as before,

p(W ′|Θ−W ′, µt, vt, data) = p(W ′)p(data|W ′,Θ−W ′, µt, vt, data)

Without the bond data a conjugate prior for W ′ is inverted Wishart. With the bond data,
a choice for the proposal density is given by the macroeconomic time series

W ′next ∼ p(W ′previous)p(yc, yq|W ′previous,Θ−W ′previous)

which is a draw from the closed-form posterior and the acceptance probability given by

a = min
[
1, p(W ′next|yield··· )/q(W ′next|W ′previous)

p(W ′previous|yield,..··· )/q(W ′previous|W ′next)

]
, where q is the proposal density above.

5.3 Appendix C

Generalized FFBS algorithm to filter volatility
The generalized version of the non-linear Kalman filter that applies to any level of non-
linearity in the observation or transition density is presented in Hore, Lopes and McCulloch
(2009). Here, we provide a specific example of their algorithm adopted to fit the non-linear
filtering exercise involved in the estimation of the macroeconomic conditional volatility vct
(vqt ) from the quadratic yield curve.
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A univariate version of the filtration of conditional volatility is described here.

X1
t+1 = c1vt + c2v

2
t + kZ0 (21)

X2
t+1 = vtZ1 (22)

vt+1 = α + βvt + cZ2 (23)

where Z0, Z1 and Z2 are N(0, 1) and independent of each other. The first equation (21) is
similar to the yield curve where the conditional volatility enters as a quadratic with loading
c1 and c2 that are known given all the other parameters. The second equation (22) reflects the
state-equation for expected consumption growth or expected inflation where the conditional
volatility enters in the error term.

Let’s say the volatilities vt can only take discrete values Y = {y1, . . . , yn}. Depending on
the problem, one has to pick a grid that is appropriate for the problem with positive support
and reaches a maximum within the grid.

Assume that the prior probabilities on v0, is given, which means that for state 0, p(Y ) =
{p(y1), . . . , p(yn)} is known. The goal is to create the posterior probability of state 1,
p(v1|X1

1 = a,X2
1 = b).

Notice that the conditional distribution of v1 is given by the state equation (23)

p(v1 = yj|v0 = yk) ∼ N(α + βyk, c
√
yk) (24)

where yj, yk ∈ Y. This represents the transition probabilities for the volatilities going from
state yk to state yj.

The joint probability of p(v1, v0) can be obtained from Bayes’ rule

p(v1 = yj, v0 = yk) = p(v1 = yj|v0 = yk)p(v0 = yk) (25)

The first term on the right is the transitional probability from state yk to state yj that one
can obtain from (23). The second equation is the prior probability distribution which is
given.

In order to get the posterior distribution of p(v1|X1
1 = a,X2

1 = b), first compute the full
joint distribution.

p(X1
1 = a,X2

1 = b, v1 = yj, v0 = yk) = p(X1
1 = a,X2

1 = b|v1 = yj, v0 = yk)

p(v1 = yj, v0 = yk)

= p(X1
1 = a|v1 = yj)p(X

2
1 = b|v1 = yj)

p(v1 = yj|v0 = yk)p(v0 = yk) (26)

The first two terms on the right can be computed from (21)-(22). The last two terms
represent the joint probabilities discussed above.
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Now, following Bayes’ rule again the joint distribution of v1, v0 conditional on (X1
1 =

a,X2
1 = b) can be written as

p(v1 = yj, v0 = yk|X1
1 = a,X2

1 = b) =
p(X1

1 = a,X2
1 = b, v1 = yj, v0 = yk)

p(X1
1 = a,X2

1 = b)
(27)

The numerator is determined by (26). The denominator is a constant conditional on (X 1
1 =

a,X2
1 = b). Hence, the above can be written as

p(v1 = yj, v0 = yk|X1
1 = a,X2

1 = b) ∝ p(X1
1 = a,X2

1 = b, v1 = yj, v0 = yk) (28)

Finally, integrate out v0 in order to get the posterior distribution of v1|X1
1 = a,X2

1 = b.

p(v1 = yj|X1
1 = a,X2

1 = b) =
∑

v0∈Y
p(X1

1 = a,X2
1 = b, v1 = yj, v0) (29)

Let Dt = {(X1
1 , X

2
1 ), . . . , (X1

t , X
2
t )}. Now, use p(v1|D1) as the prior information to get

p(v2|D2) and so on.
Filter forward in this way until the last observation (X1

T , X
2
T ) is reached and sample vT

right away from p(vT |DT ). The backward filtering requires that the state one period ahead
is known. So, once vT , is filtered, draw vT−1 all the way back to v1.

p(vt = yj|vt+1, Dt) =
p(vt+1|vt = yj)p(vt = yj|Dt)∑

vt∈Y p(vt+1|vt)p(vt|Dt)
(30)

The first term on the numerator (denominator) is the transition probability in (23) while the
second term is the obtained from the forward filtering (29).
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