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T rading volume and open interest in options and futures contracts
on stock indices, equities, and interest rate instruments traded on
world exchanges have experienced remarkable growth. From 1986

through 1991, the open interest in exchange-traded derivatives grew by
36 percent per year, reaching $3.5 billion at the end of 1991. The notional
principal of financial derivatives traded in the even larger over-the-
counter market (mostly on interest rates, in the form of swaps, forward
agreements, and option-like caps, collars, and floors) grew at an annual
rate of 40 percent.1

This rapid growth has been accompanied by controversy about the
proper role of financial derivatives and the potential for abuse. Prominent
attention has been given to losses by major corporations (for example,
Procter & Gamble and Gibson Greetings on interest rate swaps), to the
losses of broker-related short-term mutual funds (Piper Jaffray and Paine
Webber on mortgage-backed securities), and to losses experienced by
municipal agencies (Orange County, California, on just about everythhag).

Financial managers who believe they know the future course of
interest rates and asset prices have always found ways to lose big, using
traditional investments. Rightly, we have always put the responsibility
for being "often wrong but never in doubt" on hubris, absolving the
financial instruments themselves from responsibility. But now we are
told by the media a group notoriously ill-equipped to understand
derivatives--that these "new things" are so complex that they are
unknowable to all but a few. And those few are destined to misuse
derivatives, it is claimed, because we do not understand what is going on
and, not knowing how to ask the right questions, cannot limit the misuse.
We no~v blame the instruments, not the arrogance of the owners or
money managers. This counsel of despair leads the uninformed to believe
that derivatives must be eliminated or regulated in order to prevent them
from doing their damage.



Thus, the public debate about "derivatives" has
promoted the impression that the heart of the problem
has been a proliferation of brand new ways of making
bets on future stock prices, interest rates, and ex-
change rates. The positive functions of derivatives as
means of risk management are almost forgotten.

This article demonstrates how prices of exchange-
traded stock index and equity options, as well as
ftttures contracts, can be derived from information on
an "option-replicating" portfolio of stocks and bonds
that mimics the behavior of the option’s premimn.
Using the equivalence between an option or futures
contract and its replicating portfolio, the article dem-
onstrates that exchange-traded options are really
nothing new. Rather, they are repackages of the same
traditional financial instruments. The article pursues
this point by outlining several related risk-manage-
ment strategies using options and futures contracts.
These include dynamic hedging and its related strat-
egy, portfolio insurance. Finally, the article addresses
some circumstances in which "derivatives" are not
equivalent to traditional instruments. These limita-
tions are most common in the over-the-counter markets
where custom-made derivatives are desi~ed for spe-
cific uses.

I. The Pricing of Options and Futures

An equity option is a contract allowing the holder
to buy or sell a fixed number of shares at a fixed price
(the strike price) on or before an expiration date. The
holder will exercise the option only if it is in his
interest to do so. Thus, an equity option gives its
holder the right, not the obligation, to buy or sell at a
fixed price. The person who gives the option is called
the writer, and for every option held an option must be
written. The option is a call if the holder has the right
to buy (take delivery of) the shares upon payment of
the strike price; the writer must deliver the shares if
the option is exercised. The option is a put if the holder
has the right to sell (deliver) the shares upon receipt
of the strike price; the writer of the put must take
delivery if the put is exercised. The option is "Euro-
pean" if it can be exercised only on the expiration
date, and "American" if it can be exercised at any time
up to the expiration date. All equity options traded on
U.S. exchanges are American-style options.

A stock index option is similar to an equity option
with two important differences. First, the underlying
security is a stock price index (for example, the S&P
500,.the S&P 100), not a traded security. Secondly, the

settlement is in cash rather than in securities. The
owner of a call option on the S&P 500 will, upon
choosing to exercise, receive the cash equivalent of the
excess of the S&P 500 over the strike price rather than
take delivery of the securities. All stock index options
traded on U.S. exchanges are American-style with the
exception of the S&P 500 index option.

An option’s market price, or premium, is the sum
of two components. The intrinsic w~lue is the amount
that will be received if the holder chooses to exercise
the option immediately.2 The intrinsic value of the
option cannot be negative, for the holder would never
choose to exercise the option if it reduces his ~vealth.
Hence, the intrinsic value of a call option is denoted as
max(S - X, 0), where S is the current stock price and
X is the strike price specified in the option contract.
This notation simply means that the payoff is the
larger of two values, S - X or zero. The intrinsic value
of a put option is max(X - S, 0), which also cannot be
negative, for the holder of a put will never choose to
exercise it if the amount he receives (the strike price) is
less than the current stock price.

The value of an option (its premium) will equal
the intrinsic value only at the moment of expiration.
Prior to expiration, the option will have a time value,
which reflects the potential for the profitability of the
option to change. Thus, an out-of-the-money call option,
which has zero intrinsic value because the stock price
(S) is less than the strike price (X), will still sell at a
positive premium because investors realize that the
option might become in-the-money at a later date,
should the stock perform sufficiently well.

Figure 1 shows the typical relationship between
the premium on a call option and its intrinsic value.
The intrinsic value is the black line, ~vhich has a zero
value when the stock price is at or below the strike
price but increases dollar for dollar with the stock
price when the call is in-the-money. The call premium,
denoted by the red curved line labeled C, increases

~ For a description of this growth, see Remolona (1993). No-
tional principal is the value of the contract upon which payments
are based. It is considerably greater than the market value of the
contracts with which it is associated. First, for most contracts the
market price is well below the notional principal upon which
payments are based. Second, notional principal involves double-
counting. If, say, the holder of an interest rate swap for $1,000,000
(which has a net market value of zero) offsets it by selling a similar
contract, the "true" net valne is zero, but the reported notional
principal will be $2,000,000.

2 Immediate exercise of a call option will reqtfire the holder to
pay the strike price (X) in exchange for shares valued at the market
price (S). The profit is S - X when S exceeds X. If S is less than X,
the holder will not exercise the option and it will expire ~vithout
value.

26 July/August 1995 New England Economic Review



Figure 1

Call Premilun and Intrinsic Value
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from almost zero when the stock is without value and
approaches the intrinsic value as the stock price gets
very high. The vertical distance between the premium
and the intrinsic value is the time value for that stock
price. Time value is at its maximum for an at-the-
money option.

The convex shape of the call premium-stock price
relationship plays an important role in understanding
option pricing. The intuition underlying this convexity
is straightforward. If the stock price is very low, the
option ~vill be so out-of-the-money that it would take
a rare boom in stock prices to become in-the-money;
very little time value would be given to such an
option. On the other hand, if the option is very deep
in-the-money, it would take a rare downdraft to put it
out-of-the-money, and the value of the option wil! be
close to the intrinsic value.

The Pricing of European-Style Options

This section lays out the logic of option pricing in
its simplest form. It relies on a standard assumption of
economics, the "no free lunch" assumption: Riskless
arbitrage opportunities arise only in disequilibrium
and will not exist when security prices are in equilib-
rium. This means that if a portfolio of stocks and
bonds can be constructed to match movements in the
option premium, profit-seeking traders will ensure
that, when markets are in equilibrium, no profitable

arbitrage between the option and its replicating port-
folio can occur. This assumption allows the option
premium to be inferred from the value of its replicat-
ing portfolio.

Assume that the option in question is a European
equity option on a stock whose daily price movements
are binomial; that is, if the current stock price is S, the
price on the next day will be either/~S if the price goes
up or 3S if it goes down. Thus,/z is one plus the rate
of increase and 6 is one plus the rate of decrease.

The analysis of a European option can be summa-
rized in a binolnial tree. Consider a simple two-period
call option, one that has a premium of C dollars in the
first period and expires in the second period; the value
of the premium is to be determined. Because the
underlying stock price will increase to I.~S or decrease
to 3S, the value of the option at expiration on the
second day will be either max(tzS - X, 0) or max(3S -
X, 0). To be specific, assume an option with a strike
price of $48 on a stock with a price of $50 (X = 48, S =
50). If the stock price will either increase or decrease
by 5 percent (/x = 1.05 and ~ = 0.95), the next-day
stock price ~vill be either $52.50 or $47.50, and the
payoff of the option will be either $4.50 or zero.

If the option premium and stock price after an
"up" day and a "down" day are denoted C,, and C~,
and S, and Sa, respectively, the binomial tree for a
two-period option is

~C, = max[S,, - X,O], where S,, = txSClC~
(~)

max[S~ - X, 0], where S~ = 3S

The market price of the option on the first day
cannot be determined without further information.
That information is provided by noting that exactly
the same fin!l values could be achieved by investing
in a portfolio of stocks and bonds; this is the option-
replicating portfolio. Because the option-replicating
portfolio is designed to have exactly the same payoff
structure as the option, and because we know the final
payoff structure of the option, the option must have
exactly the same value as the option-replicating port-
folio. The reason is that smart money knows that two
assets worth exactly the same at any future time must
be worth the same in the present, if arbitrage oppor-
tunities are to be eliminated. (The assumption that
economic agents will act to eliminate arbitrage profits
is a crucial foundation of finance theory.)

Suppose that the option-replicating portfolio con-
sists of A ("delta") shares of the stock plus an invest-
ment of $B in bonds. Thus, a portfolio is simply a
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choice of the values of A and B. If bonds pay $rB on the
following day (r is 1.0 plus the riskless interest rate),
the binomial tree for the option-replicating portfolio is

~
(AS,, + Br), where S,, =

(AS + B) (2)

-- (AS,¢ + Br), where S

The next step in determining the call premium is
to find the values of A and B that represent a portfolio
of stocks and bonds with final values exactly matching
the final values of the call option. That means that the
option-replicating portfolio must satisfy the two equa-
tions describing the end-points of (1) and (2): (AS,, +
Br) = C~, and (AS,~ + Br) = C,~, where C,, and C,~ are
kno;vn from the option’s characteristics and S,, and S,~
are known from the assumed values of S,/~, and 3. The
required values of A and B are

A = (c,,- c,3/(S,,-

B = (C,,- AS,,)/r, and (3)

C=AS+B,

where S,, = poS and S,~ = 6S.

Suppose, as before, that a call option in question
has a strike price of $48 and that the current stock
price is $50, putting the option in-the-money ~vith an
intrinsic value of $2. Assuming a 5 percent increase
or decrease, the stock price will go to either $52.50 or
$47.50 the next day. Under these assumptions, we
have seen that the payoffs for this option must be
either $4.50 if the stock goes up or zero if it goes down.
If the riskless interest rate is 1 percent (r = 1.01), the
option-replicating portfolio will have a delta of 0.90
and the option-replicating portfolio will be a lever-
aged purchase of $45 of stock financed by $42.33 of
debt, with a net value of $2.67.

The final step requires another "no free lunch"
assumption. If any two securities are known to have
the same values at any future point in time, they
must, in equilibrium, have the same values at every
point in time. If they did not, traders would find
profitable arbitrage opportunities and their actions
would eliminate those opportunities, forcing prices
into conformity. For example, we have seen that the
option and its replicating portfolio are both worth
either $4.50 if the day is "up" or zero if it is down,
and that the option-replicating portfolio is ~vorth
$2.67 at the outset. Suppose that the call premium is
only $2. In this case, traders would buy the call and

short the replicating portfolio, receiving a net amount
of 67 cents. Becanse the final values of the option and
the portfolio are equal, they will lose nothing at the
end of the first period--increases in one are matched
by declines in the other. Thus, the3, make a net profit
of 67 cents with no risk. Traders would take advantage
of this opportunity unless the call premium rose to
$2.67, exactly lnatching the value of the replicating
portfolio. If, on the other hand, the initial value of
the call had been $3, traders would have sold the call
and bought the option-replicating portfolio for $2.67.
They would make 33 cents with absolutely no risk,
because at the end of the first period any profit or loss
on the call is offset by loss or profit on the replicating
portfolio.

This three-step analysis shows that, in an equilib-
rium with no arbitrage profits, the call premium at
the outset must be equal to the value of the option-
replicating portfolio. This simple example illustrates
a key point of this article: A European call option
is precisely equivalent to a portfolio of traditional
securities, specifically, to a leveraged purchase of
the underlying security. All that can be done with
one can also be done with the other. Thus, caution
must be used when interpreting statements that at-
tribute some special qualities to options. For example,
when options are described as allowing "high lever-
age," we should see that they have no special ad-
vantage in providing leverage; they are an alterna-
tive way of achieving a leveraged position, and in
equilibrium they shotfld cost about the same as the
traditional way.

The full derivation of a binomial option pricing
model for multiple time periods is given in Box 1. This
involves solving the fl.~ll binomial tree backzoard in the
manner just outlined: From any two adjacent final
payoffs, the value of the option at the preceding node
can be computed, allowing derivation of the full range
of option values on the day before expiration. Then,
armed with those data, the option values at each node
on the second day before expiration can be con-
structed. As developed in Box 1, at each node the
value of the call option can be derived as

C = [qC,, + (1 - q)C~]/r, (4)

where q= (r- 3)/(ix- 3)

This recursion formula can be shown to be equiv-
alent to the option-replicating formula C = kS + B,
but it puts the call premium into a recursive format
that reveals the connection between current and future
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Box 1: The General Binomial Option Pricing Model

The logic of the binomial pricing model is laid
out in the text for a two-period option. Here we
derive its general form for a multi-period European
call option.

At time t a European call option with strike
price X is written on an underlying stock with price
S. The option expires at time T, at which time it
will pay the holder max[Sr - X, 0], the excess of the
stock price over the strike price, if positive, or zero.3
The stock’s price follows a Bernoulli process: On
each day it either increases to i± (/, > 1) times the
previous day’s price with probability rr, or falls to
3 (0 < 3 < 1) th~es the previous day’s price with
probability 1 - rr. Thus, /x is 1 plus the rate of
increase and 3 is 1 plus the rate of decrease. The
statistical expected value and variance of the one-
period rate of return are vr(/, - 1) + (1 - vr)(3 - 1)
and rr(1 - ~r)(/x - 3)2, respectively.

We first consider the final payoffs at expiration.
An option with T - t periods will have T - t + 1
payoffs. If x is the number of "up" days in
the remaining T - t days, the payoff will be
~lax(~X3T-t-xs -- X, 0). If there are too few "up"
days, the payoff will be zero because the option
will expire out-of-the-money. We can derive the
critical number of good days, defined as the mini-
mum ntm~ber of "up" days required to put the
option just at-the-money. This occurs when x < x*,
where x* = ln(X/S3r)ln(ix/3) is the minimum
number of "ups" required to put the option at-the-
money.

Consider any two adjacent final payoffs valued
at C(x, T) - max(ix~-3r-~S - X, 0) and C(x + 1, T) =
,~lax(IxX+13T-{x+1}S -- X, 0). These differ only be-
cause of the presence or absence of an "up" on day
T - 1. Because the call can be hedged by an
option-replicating portfolio, it can be shown that

that arbitrage ensures that the option’s value on the
previous day is

C(x,T- 1) = r ~[qC(x + 1, T)

+ (1 - q)C(x, T)] (B1.1)

where q is the risk-neutral probability of an "up."
This is the fundamental recursion formula de-
scribed in the text. The analysis of the hedged
position reveals that the probability parameter is
q = (r - 3)(/x - 3), which does not depend upon
the statistical probability (vr) or on the expected
return on stocks.

This recursive equation can be used to solve
the whole binomial tree back to the beginning.
Thus, starting with final values C(x, T) and C(x + 1,
T) we can solve for the previous node C(x, T - 1).
Doing the same for the next two adjacent final
payoffs we can find C(x - 1, T - 1), allowing us to
find C(x - 1, T - 2), and so on.

Suppose that we are on day t of the option’s
life. Defining (T - t, i) as the number of ways that
there can be i "ups" in the remaining T - t days, we
can see that the call premium at an}, day after x
"ups" (and n - x "downs") is

T-t

Ct = r-Ir-tl ~ qi(1 - q)W-t-i~llax(Sl~i6T-t-i -- X,O)
i=0

(B1.2)
Tl-ds says that the call premitm~ is the present

value of the expected fh~al payoffs, ush~g risk-neutral
analysis, that is, ush~g the risk-neutra! interest rate as
the discount rate, and computing expectations using
the "objective" risk-neutTal probability of an "up."
The probability distribution used is the bh~omial
distribution, hence the name binomial option pricing.

option prices. It states that the call premium at any
node is the present value of the expected call premium
at the next node. The expected call premiuln is a
weighted average of the known call premiums in the
"up" and "do~vn" states of the stock. The parameter
"q," called the risk-neutral probability of a stock price
increase, sets the weights given to the "up" and
"down" states. For our example (with/x = 1.05, 6 =
0.95 and r = 1.01), this probability is q = 0.60 and the
option premium implied by equation (4) is $2.67.

Somewhat paradoxically, the option is valued as
if investors are risk-neutral, that is, the premium
depends upon the expected present value defined by
the risk-neutral probability and the riskless interest
rate. It is not that investors are truly risk-neutral, but
rather that in pricing options they can be treated as if

~ An essential feature of the bh~omial model is that thne is
divided into discrete intervals. We call these "days," ~vith no
necessary connection to our circadian rhythms.
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Table 1
Value Matrix for Ten-Period European Call Option
No Cash Dividends

Number of Ups (x)

Period 0 1 2 3 4 5 6 7 8 9 10

0 10.91
1 6.77 14.27
2 3.60 9.29 18.36
3 1.48 5.26 12.51 23.22
4 .36 2.34 7.54 16.52
5 .00 .63 3.66 10.60
6 .00 .00 1.10 5.63
7 .00 .00 .00 1.94
8 .00 .00 .00 .00
9 .00 .00 .00 .00

10 .00 .00 .00 .00
Parameters:/-~ = 1.10, 6 = 0.9091, p = 1.02, S

28.85
21.37 35.24
14.55 27.01 42.39
8.49 19.43 33.41
3.41 12.44 25.15

.00 5.98 17.53

.00 .00 10.50
= X = 50. Note that q = 0.5809.

50.32
40.52 59.12
31.51 48.42 68.88
23.21 38.58 57.18 79.69

they are. As a result, the option premium is indepen-
dent of the statistical probability of a stock price
increase, and of the statistical expected rate of return
on the stock. Rather, the option is valued using the
riskless rate of interest, not an interest rate containing
market risk.

The disconnect between option prices and the
expected returns on the underlying assets appears
paradoxical, for how can the value of a call option not
be higher when the expected rate of increase of the
stock price is higher? The answer lies in the ability to
create a riskless arbitrage by buying a call and selling
its option-replicating portfolio. Smart money will re-
alize that a call option combined with a short position
in its option-replicating portfolio is a perfect hedge,
creating a riskless position requiring no net invest-
ment. The option premium will not contain any re-
ward for risk, for while the option is risky in isolation,
it has a perfect hedge and holding the option carries
no inherent risks. The investor who decides to hold an
unhedged option must do so without any expectation
of reward, for the risk he bears is a matter of individ-
ual choice and is not inherent in the option itself. In
the language of portfolio theory, any risks borne by
the option holder are idiosyncratic, not systematic,
and can earn no reward.

An example of the multiperiod valuation model
illustrated in Box 1 is given in Table 1, which assumes
a 10-period at-the-money European call option on a
$50 stock, with/x = 1.10, ~ = 1//x = 0.9091, and r =
1.02. Each cell, equivalent to a node on the binomial

tree, shows the value of the call on the nth trading day
after x "ups" and 10 - x "do~vns"; this is denoted as
C(x, n). To compute the option premium in each cell
we begin at the end, with the possible payoffs at
expiration on day 10. These possible payoffs are com-
puted as max(ixi3~°-is - X, 0); hence, each differs
because of the different numbers of "up" and "down"
days over the 10-day lifetime of the option. We see
that the expiration-day values are zero for five or
fewer ups and rise to $79.69 for 10 consecutive "ups."
These intrinsic values must be the call premiums at
expiration because no time remains to receive a time
value.

The day-9 option premiums can then be con-
structed using the known day-10 payoffs along with
equation (4), using q = 0.5809. For example, if on day
9 there have been eight "ups," then by day 10 there
must have been either eight or nine "ups," with
payoffs of $38.58 or $57.18, respectively. Following
equation (4), the premium at the (8,9) node must be
C(8,9) = $48.42. Computing all the possible call pre-
miums on day 9 allows the day-8 premiums to be
computed, and so on. Tracing the values back to the
beginning, we see that the initial premium on this call
option will be $10.91.

Tables 2 and 3 show the option-replicating port-
folio for our hypothetical 10-day European call option
whose values are shown in Table 1. Table 2 reports the
value of delta (zX) for our hypothetical 10-day call
option, while Table 3 shows the investment in bonds,
B(x, n), required to replicate the call option; this
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Table 2
Option-Replicating Nu~nber of Shares

NumberofUps ~)

Day 0 1 2 3 4 5 6 7 8 9
0 .79
1 .65 ,86
2 .48 .76 .93
3 .28 .60 .86 .97
4 ,10 .38 .73 .93
5 .00 ,15 .52 .85
6 .00 .00 .25 .69
7 .00 .00 .00 .39
8 ,00 ,00 .00 .00
9 .00 .00 .00 .00

Parameters:/~ = 1.10, 3 = 0.909t, p = 1,02, S = X = 50,

.99

.98 1.00

.95 1,00 1.00
,86 1.00 1,00 1.00
.63 1,00 1.00 1.00
.00 1.00 1.00 1.00

1.00
1.00 1.00

Note: The option-replicating number of shares is the number of shares that results in value changes that match the change in the value of one European
call option.

Table 3
Option-Replicating Investment in Bonds per European Call

Number of Ups (x)
1 2 3 4 5Day 0

0 -28.40
1 -22.99 -33,28
2 -16.18 -28.70 -37.73
3 -8.92 -21.98 -34.54 -41.33
4 -2.94 -13.53 -28.82 -39.85
5 .00 -5.16 -20.04 -36.15
6 .00 .00 -9.06 -28.66
7 .00 .00 .00 -15.90
8 .00 .00 .00 .00
9 .00 .00 .00 .00

6 7 8 9

-43.82
-43.89 -45.29
-42.79 -46.19 -46.19
-38.84 -47.12 -47.12 -47.12
-27.92 -48.06 -48.06 -48,06    -48.06

,00 -49.02 -49.02 -49.02    -49.02    -49.02
Parameters:/.~ = 1.10, 3 = 0.9091, p = 1,02, S(0) = 50, X = 50, N = 10.
Note: The replicating investment in bonds is defined as B(x, n) = C(x, n) - 8(x, n) ,~ S(n). A negative value indicates borrowing.

depends on the number of "ups" and "downs.’’4 Front
these tables we see that at the outset the call is
equivalent to 0.79 shares plus borrowing of $28.40.
However, if 3 "ups" have occurred by day 5, the
option-replicating portfolio consists of $36.15 in debt
plus 0.85 shares. In the lower left portion of the
matrices, the option is so far out-of-the-money that no
shares are bought and no debt is incurred. Thus, the
option is worthless because it cannot end in-the-
money. In the lower right portion, the option is so

4 The cells are computed as A(x, n) = [C(x + I, n + 1) - C(x, n
+ 1)]/[(# - 8)S(n) and B(x, n) = [p.C(x, n + 1) - 3C(x + 1, n +
I)11[(~ - ~)s(n)].

deep in-the-money that one share is required to rep-
licate one option.

Pricing of Put Options

From the call option pricing model it is easy to
construct a pricing model for a European put option
by invoking the put-call parity theorem. According to
this theorem, arbitrage enforces a simple relationship
between put and call premiums. A put and a call for
the same stock, each with the same strike price and
expiration date, must be priced so that at any time t
the following is satisfied (P is the put premium):
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Pt + St = Ct + Xr-(r-t) (5)

A simultaneous investment in a put and one
share of the stock must be equal to an investment in a
call plus bonds equal to the present value of the strike
price. Arbitrage forces this to be true because the final
values of the two positions are equal: At expiration on
day T the stock clun put ~vill be worth ST + max(X -
S T, 0), which is the greater of the exercise price or the
stock price. On that same date the call cure bond
position will be worth max(ST_x, 0) + X, also equal to
the larger of the stock price or the exercise price.
Because two positions worth the same amount at one
time must, in equilibrium, be worth the same at any
other time, relationship (5) must hold.

From put-call parity we see that a put is equiva-
lent to a call plus bonds equal to the present value of
the strike price plus a short position in the stock. Once
the equilibrium call premium is known, the equilib-
rium put premium is also known. Thus, in the case of
European options, put pricing reduces to a simple
transformation of call pricing. This is not true of
American put options, for which there is no put-call
parity relationship.

Figure 2 shows the typical relationship between
the put premium and the stock price. The intrinsic
value is shown by the black line and the put premium
is shown by the red convex curve. There is one notable
difference between the call and put relationships
shown in Figures 1 and 2: For a call, the time value is

Figure 2

Put Premium and Intrinsic Value
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always positive, but for a put it can be negative if the
stock price is sufficiently low. That is, the premium
described by put-call parity for a European put can be
less than the intrinsic value if the put is deep-in-the-
money. This anomaly of a negative time value for
deep-in-the-money puts means that there can be an
incentive to exercise the put early. For example, if the
intrinsic value of the put is $10 and the put premium
is at the put-call parity level of, say, $8, traders will
want to buy the put at $8 and receive $10 by exercising
it. This behavior is not possible for a European put,
which cannot be exercised early. But it does present
problems for an American put because the American
put premium cannot go below its intrinsic value; if it
did, traders would make a riskless profit by buying
the put and immediately exercising it. Therefore, it is
more accurate to say that the observed American put
premium will be the higher of the intrinsic value or the
put-call parity value.

Thus, because no value is attached to the ability to
exercise an American option early, the American call
option must be priced as if it were a European call
option, and the pricing model just outlh~ed should
work for both American and European call options.
But an American put option can be worth more than
its European counterpart because of the possibility
that it will go so deeply into the money that early
exercise will be profitable.

The Effects of Cash Dividends: A Digression

The previous sections assume that the stock un-
derlying the equity option pays no cash dividends
during the life of the option. While the exposition that
follows maintains this assumption, it is clearly not
universally valid. Therefore we briefly extend the
option pricing model to acknowledge cash dividends.

Cash dividends do not complicate the story for a
European option because it must be held to expiration,
but they do require modification of the pricing of
American options. Under certain circumstances it is
profitable to engage in "dividend capture" strategies,
which require early exercise of American options.
These strategies involve buying a call option and
converting it into stock in order to receive the divi-
dend, then selling the stock. Note that since a call
option is equivalent to a leveraged purchase of stocks,
the same result can be obtained by borrowing money
to buy the stock, then closing that position out after
the ex-dividend date.

It is clear that the only incentive for early exercise
for dividend capture occurs just before the stock goes
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Figure 3

Early E.~; cts~ of American Call
o~l Divide;id-Paying Stock

Intrinsic Value
if Exercised
max [S - X, O]

\
Intrinsic Value
if Not Exercised
max IS- D-X, Ol

0     No Early Exercise        Exercise
S

value of the dividend. Thus, the vertical distance
between the two intrinsic value lines is the value of the
cash dividend. The red convex curve shows the call
premium as a function of the ex-dividend price. This is
the value of the call if it is not exercised.

A dividend-capture incentive to exercise the op-
tion is present when the intrinsic value upon exercise
exceeds the value of the call if it is not. In that case,
the dividends received exceed the value of the call
sacrificed. In Figure 3 the "break-even" occurs at a
stock price of S*. Dividend capture is profitable at
any stock price above S*, and carries a net loss at any
lower stock price. Note that at that break-even point
the option must be in-the-money, for the observed
(cure-dividend) stock price must exceed the strike
price.

We see that while early exercise of an American
call option is never optimal in the absence of a cash
dividend, it will be optimal if the option is sufficiently
in-the-money. As a result, American call options on
dividend-paying stocks will have premiums above
those on equivalent non-dividend stocks.

ex-dividend. The reason is that exercise before the
ex-dividend date requires payment of the strike price
before the rights to the dividend are received, hence
exercise before the ex-dividend date means that you
pay the strike price earlier with no offsetting benefit.
It would be wiser to delay the exercise until the last
moment before the stock goes ex-dividend. Thus,
early exercise will be prompted by dividends only at
ex-dividend dates.

The decision at each ex-dividend date involves a
simple calculation. If the option is exercised, the
holder receives the subsequent stream of cash divi-
dends but, because exercise gives only the intrinsic
value of the option, the tilne value is lost. Hence, the
present value of the dividend is received ha exchange
for a capital value loss. Early exercise for dividend
capture is optimal only when the value of the divi-
dends exceeds the time value of the option. The
"break-even" stock price for triggering dividend cap-
ture occurs when the option is in-the-money. This is
illustrated in Figure 3. The horizontal axis is the
observed (cure-dividend) price, which includes the
value of the dividend to be received. The higher
kinked line shows the intrinsic value if the option is
exercised early; this includes the value of the cash
dividend. The lower kinked line shows the intrinsic
value if the option is not exercised, in which case the
option’s value depends on the ex-dividend price,
defined as the observed (cum-dividend) price less the

Determinants of Call Premiums

The call premium depends on several variables,
and any changes in the premium must be due to
changes in one or several of these variables. While
calculation of the parameters describing the effect of
these variables is cumbersome in a binomial model, it
is very straightforward in the familiar Black-Scholes
model, upon which this section is based. The compar-
ison of the two models, and the calculation of the
relevant parameters in the Black-Scholes model, is
developed in Box 2.

The most prominent underlying variable is the
stock price. As shown in Figure 1, a convex relationship
exists between the call premium and the contempora-
neous stock price, so changes in price affect the pre-
mium in the same direction and with increasing force.
The parameters that describe this relationship are its
slope, called the option’s delta, denoted by A, and the
rate of change in the slope, called the gamma and
denoted by F.-~ Because both delta and gamma are
positive, the relationship is convex. This convexity
arises from the fact that at a very low stock price the
option is almost certain to expire out-of-the-money, so

5 This delta is the same as the delta in the binomial model. Both
represent the change in the call premium when the stock price
changes. For the binomial model, with discrete price movements,
the value of delta is given by the first equation in (3).
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Box 2: Relationship of the Binomial Model with the Black-Scholes Model

The binomial pricing model can be ~vritten in a
way that more accurately conveys the intuition
underlying it. Equation (B1.1) can be rewritten as

C = SN1 - X~’-(T-t)N2 (B2.1)

T-t

i-O

T-t

~ qi(1 _ q)T-t-i i = max(x*,O),..., T - t
i=0

x* = in(X/S~-t)/ln(/x/~)

The value of N1 is the expected present value of
a dollar invested in the stock conditional on the
option ending in-the money, hence the term SNI is
the expected present value of the stock obtained if
the option is exercised. The value of N2 is the
probability that the option will end in-the-money,
hence the second term is the expected present value
of the strike price. Therefore, the call premium is
simply the expected net present value of the option,
if it is ~vorth exercising it.

Cox, Ross, and Rubinstein (1977) have shown
that the binomial model converges to the more
familiar Black-Scholes (1973) model when time is
continuous rather than discrete, and when the
probability distribution of stock prices is log-nor-
mal. The Black-Scholes pricing model for a Euro-
pean call option on a stock having the value for the
standard deviation of its rate of price change is

C = SN(d1) - Xe-r(T-t)N(d2) (B2.2)

dl = [In(S/X) + (r + V~_o-2)(T - t)]/~r\i(T- t)

d2 = dl - o-x,’(T - t)

where N(d) is the probability that a standard nor-
mal random variable is less than d. The interpreta-
tion is precisely the same as that of the binomial
model: The value of the call is the value of the
option replicating portfolio, which consists of N(d~)
shares of the stock of which the amount XL~-r(r-t)

N(d2) is financed by borrowing at the riskless inter-

est rate. As in the binomial case, the first term,
SN(dl), is the expected present value of the stock
obtained by exercising the option and Xe-’(T-t)

N(d2) is the expected present value of the strike
price paid, both expectations formed conditional on
the option ending in-the-money.

The Black-Scholes model is remarkably simple,
given its rather arcane foundations, and it has the
advantage of beh~g very specific about the effects of
changes in parameters on call premiums. In partic-
ular, it states that the response of the call premium
to changes in the parameters is

(a) Delta (Ac) = OC/OS = N(d~)

(b) Rho (Pc) = OC/Or = (T - t)Xe-"{r-t~N(d2)

(c)Gamma (Fc) = 02C/02S = N’(dI )/[S~(T - t)1/2]

(d) Vega (A~) = OC/&r = (T - t)l/2Xe-r(T-t)N’(d2)

(e)

(f)

Theta (0c) = OC/Ot =
-Xe-r(T-t){[o-/2(T- t)l/2]N’(d2) + rN(d2)}

Chi (,¥c) = OC/OX = -e-r(T-t)N(d2)

Thus, the delta and gamma (or first and second
derivatives of C ,vith respect to S) are both positive,
reflecting the convexity of the premium as seen in
Figure 1. The derivative of C with respect to r (the
Rho) is positive, so that a rise in r will increase the
call premium. The response of C to a change in
volatility is also direct, so that call premiums rise
when volatility increases. The negative Theta indi-
cates that call premiums are higher for options with
longer remaining lives, and that as the life of an
option shortens, its premium declines. The negative
Chi says that the call premium is negatively related
to the strike price.

Using put-call parity the parameters describ-
ing the put option can be expressed as follows:

An= k~- 1 F~,= Fc

Pp = Pc - (T- t)Xe-’(r-t) 0~, = 0c - rXe-’(T-t)

Ap = Ac z~p = Xc q- ~°-r(T-t)

any change in S has little chance of affecting the final
payoff and the slope approaches zero. As the stock
price falls, the option-replicating portfolio approaches

a bonds-only portfolio. At a very high stock price, the
option is so far in-the-money that it is unlikely to
expire without value, so the slope approaches one.

34 July/August 1995 New England Economic Review



As the stock price increases, the option-replicating
portfolio approaches a stocks-only portfolio; that is,
the option is equivalent to holding a share of common
stock.

The premium on a call option will increase ;vith
the time remaining until expiration. The parameter de-
scribing this, the option’s theta, measures the response
of the premium to the passage of time.6 As the time to
expiration increases, the distribution of the stock price
at expiration widens in response to the prospect of
longer runs in "ups" and "downs." Because the
payoffs of the option are truncated at zero, the investor
will benefit from longer runs of "ups" but not be
harmed by longer runs of "downs"; hence, a longer
time to expiration will confer potential gains that offset
the potential losses.

The parameter describing the effect of a change in
the riskless interest rate is the option’s rho. While
changes in r operate through several channels (the
most direct being the present value of the exercise
price), the net result is a positive rho. Thus, increases
in interest rates, other things equal, will raise the call
premium, and the greater is the rho the stronger is the
effect.

Finally, the variability of the stock’s rate of return will
also affect the value of a call option. In a binomial
model, the variability can be measured by the range of
stock returns, or (/~ - 3). The parameter measuring the
response of the call premium to changes in variability
is called the option’s vega. Vega, also called Lambda
because it is denoted by A, is positive because a
greater range of returns improves the prospects of
being in-the-money, hence raising the value of the call.

of S-~ - Ft at expiration. Buying this future.s contract
and simultaneously investing the amottnt r-(T-t)Ft in
bonds has a value of Sr at expiration. The value of a
share of the stock owned outright at time t, St, will also
be Sr at expiration. Because arbitrage will ensure that
the amount required to buy two perfectly equivalent
claims on a fl_~ture share must be equal at the out-
set, the equilibrium requires St = r-~r t)Ft. Hence,
in equilibrium

Ft = St 1°(r-t) (6)

Thus, the futures price is equal to the price of a
share accumulated to the expiration date at the riskless
rate of interest.7 Note that the accumulation factor is
the riskless rate of interest, not the expected rate of
return on the stock. Note also that, just as we have
seen that options are equivalent to a portfolio of stocks

Futures contracts are also
equivalent to a portfolio of
options, stocks, and bonds.

Specifically, a futures contract
is equivalent to a leveraged

purchase of one full share of stock
combined with borrowing the

present value of the futures price.

Options and Futures

We have seen that any option has a replicating
portfolio of stocks and bonds, and that the option-
pricing formula states the characteristics of that port-
folio. We now showy that futures contracts are also
equivalent to a portfolio of options, stocks, and bonds.
Specifically, a futures contract is equivalent to a lever-
aged purchase of one full share of stock combined
with borrowing the present value of the futures price.

A futures contract provides a zero payoff if, at
expiration, the stock price is equal to the futures price
determined by the market at the thne the contract is
initiated. For each one-dollar deviation in stock price
from the contractual futures price, a one-dollar change
in payoff occurs. Thus, if the futures price at time t for
delivery of a share at time T is Ft, a futures contract on
common stock entered into at time t has a profit or loss

and bonds, futures contracts are also equivalent to a
(different) portfolio of stocks and bonds. From these
equivalences, others emerge. For example, a futures
contract must be equivalent to a suitably constructed
portfolio of options and bonds. In particular, by put-
call parity, it must be equivalent to simultaneously
buying a call, writing a put with the same strike price
and term, and investing the difference between the
strike price and the futures price in bonds.

6 Theta is defined as -(OC/Ot), the negative of the change in tlie
premium as the time to expiration shortens slightly; hence theta is
positive.

7 If tlie security underlying the futures contract pays a cash
dividend proportional to the security price, tlie discount rate is the
riskless rate less the dividend yield.
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Table 4
Hedging Ratio: European Calls per Share of Stock

Number of Ups (x)

0 1 2 3 4 5Day

0 -1.27
1 -1.53 -1.16
2 -2.09 -1.32 -1.08
3 -3.61 -1.67 -1.17 -1.03
4 -10.36 -2.60 -1.37 -1.07
5 .00 -6.49 -1.92 -1.18
6 .00 .00 -4.07 -1.46
7 .00 .00 .00 -2.55
8 ’00 I00 i00 ’00

9 .00 .00 .00 .00

7 8 9

-1.01
-1.02 -1.00
-1.05 -1.00 -1.00
-1.16 -1.00 -1.00 -1.00
-1.60 -1.00 -1.00 -1.00 -1.00

.00 -I .00 -I .00 -I .00 -I .00 -1.00

Parameters: p_ = 1.10, 8 = 0.9091, p = 1.02, S = X = 50.
Note: The hedging ratio is defined as h(x, n) = - I/delta(x, n). It is the negative of the reciprocal of tile change in call premium per dollar change in stock price.

II. Risk Management zoith
Options and Futures

Just as a combination of stocks and bonds can
replicate an option’s price movements, options can be
used to hedge against movements in stock prices.
Hedges can be static or dynamic. The static hedge
adopts a hedging ratio and adheres to it as the future
of stock prices unfolds. Dynamic hedges adjust the
hedging ratio as new information comes in. Maintain-
ing the proper hedge requires information about the
sensitivity of the option premium to changes in the
stock price, that is, about the option’s delta and
gamma.

Dynamic Hedging

Delta hedging is a form of dynamic hedging that
provides a short-term hedge against relatively small
stock price movements. This hedging strategy requires
computation of the hedging ratio, defined as minus the
inverse of the delta (h = -l/A). The hedging ratio, h,
is the number of calls that must be written to match
one long share, or the number of calls that must be
purchased to match one short share. A position in calls
equal to the hedging ratio will ensure that if the stock
price rises (falls), the value of the call position will fall
(rise) by just enough to provide a complete hedge.

The hedging ratio implied by the hypothetical call
option of Tables 1 to 3 is shown in Table 4. Each cell is
the reciprocal of the associated entry in Table 2. At the
outset, the investor must write 1.27 calls to match one
long share. As time passes, the hedging ratio rises if

the stock price falls, and falls if the stock price rises. As
the stock price rises, the call goes deeper in-the-money
and its delta increases, hence fewer calls must be
written to match a dollar of stock price change.

Examination of the formula for delta reveals that
it is simply the slope of the call premium-stock price
relationship, as shown in Figure 1. For some deriva-
tives, like stock index futures, the delta is constant so
the gamma is zero. For these "linear" derivatives, the
appropriate hedge does not change with the underly-
ing stock price and a static hedge can be adopted.
However, the convexity of the call prelnium-stock
price relationship arising from a positive gamma
means that the delta changes with stock prices. The
convexity of the call premium-stock price relationship
has two important implications for hedging. First, the
higher the gamma, the more frequently a delta hedge
must be altered as stock prices change. The reason is,
of course, that the delta itself will respond more
sensitively to changes in stock prices when the gamma
is high. This is particularly pronounced when the
option is just at-the-money, for the gamma is greatest
at this point. The frequency of position adjustments
can be reduced by creating both delta and gamma
neutrality. Just as a position in a certain number of
options can create a delta-neutral portfolio, so a port-
folio that is both delta- and gmmna-neutral can be con-
structed by using two different options on the stock,s

8 Let A~ and F~ be the delta and gamma of one option, and Aa
and F2 be the delta and gamma of a second option, differing in strike
price or time to expiration. Let there be m and n numbers of options
of each type, respectively, per share of stock held. Then the value of
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Figure 4

TheRole qfi Delta and Gamma
in Dynamic Hedging

C+

Co

S- So S+

A second implication is that when gamma is high,
delta hedging is more likely to fail when large stock
price jtunps occur. With large price changes, the
optimal hedging ratio will differ from the hedg~ng
ratio designed for small changes. An example is
shown in Figure 4, where the delta at stock price So is
shown as the dashed line tangent to the convex curve
at S0. A delta hedge can be placed by writing calls
equal to the reciprocal of that delta at SO. This will
suffice to protect against small price fluctuations.
Suppose, however, the stock price jumps to S+. The
reciprocal of the slope of the line connecting CO and
C+ represents the average delta, and the hedging ratio
that would protect against that price jump is lower:
Fewer calls need to be written to protect against large
price jumps.

Suppose instead that the stock price fell to S-.
The reciprocal of the slope of the line connecting CO
and C- will measure the correct hedging ratio. This
slope is lower than the local delta at So, so the delta
hedge will require writing fewer calls than would be
necessary to protect against the fall. The value of the
written calls wi!l rise less than the decline in the stock
price, leaving the delta-hedging investor exposed to
stock market crashes.

the portfolio is given by V = mC + nC + S. A delta-neutral portfolio
(0V/0S = 0) requires m,X~ + nA2 + 1 = 0, while a gamma-neutral
portfolio (O2V/OS2 = 0) requires mF~ + nl?2 = 0. These two
equations can be solved for the values of m and n.

Thus, a hedger will be exposed to jumps in the
underlying stock’s price: He will write too many calls
when prices jump up, and too few calls when prices
jump down. There is no way out of this problem. One
compromise is to use the average delta between the
original position and a chosen stock price. Thus, in
Figure 4 the hedging ratio for a jump to S+ would be
the reciprocal of the line connecting CO and C+.
However, this approach can increase risk exposure if
the price forecast is wrong: If the price should fall
rather than rise, the compromise moves the portfolio
in the wrong direction.

Portfolio h~surance

Portfolio insurance is a hedging method closely
related to dynamic hedging. The problem posed for
portfolio insurance is to construct the equivalent of a
put option on a portfolio by dynamically varying the
stock-bond composition of the portfolio. Thus, a syn-
thetic put is created by portfolio allocations that mimic
the option-replicating portfolio.

Consider a financial institution with a portfolio
of $100 million. Suppose that the manager wants to
ensure that at the end of 10 days the portfolio is not
worth less than its starting value of $100 million. A
direct approach would be to buy a 10-day put on the
portfolio with a strike price of $100 million. However,
this might not be feasible because puts generally are
not available for portfolios, because no puts are avail-
able with matching strike prices or expiration dates, or
because regulation inhibits the use of derivatives.
Even if an appropriate put option is available, it is
more likely to be a custom-made option provided by
a dealer than a standardized option traded in open
markets. Hence, the put premium might be excessive,
reflecting the bargaining position of the dealer.

An alternative approach is to buy "portfolio in-
surance" by creating a synthetic put on the portfolio.
This is possible because, as we have seen, any position
in calls (or puts) can be replicated using stocks and
bonds. An application of portfolio insurance is dem-
onstrated in Table 5. If the entire portfolio of $100
million is invested entirely in stocks for 10 periods,
assuming the binomial stock price process with pa-
rameter values used in previous examples, the final
value will range from a low of $38.554 million (if 10
"downs" occur) to a high of $259.374 million (if 10
"ups" occur). These final values are shown in the
"Final Value: If 100 percent stock" row at the bottom
of the table.

Suppose instead that our manager wants to estab-
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lish a floor of $100 million at the end of 10 periods,
while enjoying all the benefits of a 100 percent stock
position if stocks increase. This means that he wants to
achieve the final values shown by the "Final Value: If
insured" row, computed as max(1.10~0.90911°-~100,
100) with x "up" periods. Table 5 shows that the 100
percent stock fund will be worth at least $100 million
if five or more "ups" occur in the 10 days. These
"Final Value: If insured" values establish the end-
points of a dynamic option-replicating strategy. By
solving backward from these final values, we can
construct the dynamic path of the option-replicating
portfolio of stocks and bonds that leads to these
"insured" values. These computations form the cells
of Table 5.

Portfolio insurance is a hedging
method closely related to

dynamic hedging.

Suppose that only two "ups" occur in the first
nine days. Table 5 shows that the tenth day’s goal. is
$100 million, regardless of the movement of stock
prices on the tenth day. The only way this can be
achieved is by putting $98.039 million into bonds,
nothh~g into stocks, on the ninth day. Stocks are
avoided because any investment in stocks will poten-
tially break the $100 million floor. However, if six
"ups" have occurred in nine days, the tenth-day goal
is $146.41 million if an "up" occurs on the tenth day
and $121 million if a "down" occurs. In order to
achieve this, the replicating portfolio must be worth
$133.1 million, all invested in stocks because there is
no chance the floor will be broken.

Working all the way back we cau compute the
total value and composition of the portfolio required
to replicate the desired final results. This leads us to an
apparent paradox: In order to achieve the insurance
goals, the portfolio must have a starting value of
$103.86 million, an impossibility in light of the postu-
lated $100 million starting value.

What this paradox reveals is that you cannot
simultaneously enjoy the full benefits of 100 percent
investment in stocks when prices increase and estab-
lish a floor that avoids price decreases. The first goal
requires full investment in stocks, while the second
requires some investment in bonds. The synthetic put

of portfolio insurance has a hidden premium. This
"insurance" premium, which should be equal to the
premium that would have been paid for a standard-
ized put option if it were available, arises from the
necessary sacrifice of upside potential in order to
reduce downside risk. In our example, the missing
$3.86 million measures the insurance premium. In-
deed, this is the premium for the synthetic put and (in
the absence of transactions costs) it would also be the
premium for an actual put option with a $100 million
strike price.

The insurance premium in this example is 3.86
percent of the "face value" of the insurance. The
institution with an initial portfolio of $100 million can
do no better than establish a floor of $96.14 million, the
remaining $3.86 million being the required sacrifice
necessary to achieve that floor. Indeed, each number
in Table 5 will be reduced by 3.86 percent to reflect the
insurance premium required to keep to the desired
floor. Thus, the achievable final values "if insured"
will range from the floor of $96.14 million to a maxi-
mum of $249.36 million.

Portfolio Insurance with Stock h~dex Futures

The strategy just outlined requires frequent port-
folio reallocations as stock prices change. These can
entail considerable expense in terms of commissions
as well as bid-asked spreads. Because transactions in
stock index futures carry relatively low costs, Rubin-
stein (1985) suggests that an institution with a diver-
sified portfolio might find it appropriate to use stock
index futures rather than stock transactions to achieve
the desired insurance.

The use of stock index futures can carry its own
costs. While transactions costs are low and margin
requirements are both low and often not binding,9

there is the possibility of "basis risk" when the port-
folio of stocks does not exactly match the stock index
future being used. This is discussed in the next section.
Even so, the net costs of the insurance can be reduced
using futures.

We have seen that a futures contract should be
priced so that F = SF(r-t). The equivalence between
futures and spot stock prices suggests a simple ap-
proach to portfolio rebalancing: Fully invest in stocks
at the outset and maintain the original position in
shares, using futures contracts rather than stock trades
to achieve the insurance goals, and finance any profits

9 Margin can be provided in the form of securities already held
by the institution.
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or losses on the futures contracts by lending or bor-
rowing. Alternatively, one could fully invest in bonds
at the outset and vary the positions in stocks and
futures contracts to achieve the goals.

Table 6 demonstrates the first approach. An initial
amount of $103.86 million is assumed so that the
portfolio insurance results of Table 5 can be used as a
guide. Variations in bonds and futures contracts are
constructed to replicate the entire path of "insured
value" outcomes in Table 5. This is done by buying
futures contracts after stock price increases and selling
them following a decline in prices, thereby realizing
some of the futures profits. The amount of futures
profits to realize is just enough so that, when invested
in bonds, the value of the portfolio is equal to the
insurance goal.

For example, on day zero the institution has
$103.858 million to invest. It holds all of this in stocks,
none in bonds, and writes 10-day futures contracts for
0.422 million shares. The futures price is determined
as F = 50(1.02)~° = $60.95. If the stock price goes up to
$55, the value of shares on day 1 is $114.244 million
and paper losses of $2.018 million occur on the futures
contracts, arising from the increase in the futures price
to $65.73. These futures losses are all realized and are
paid for by borrowing $2.018 million. The net value of
the portfolio is $112.226 million, which is the h~sur-
ance goal under the plan established in Table 5. Then,
in order to position itself for the second day, the
institution will write 0.125 futures contracts. Thus, it
will conclude the first day with a portfolio worth
$112.226 million, of which $114.244 million is stock
financed by borrowing $2.018 million, plus a short
position of 0.125 futures.~°

Had prices gone down on the first day, the
manager would have experienced a gain of $6.628 per
futures contract, for a total profit of $2.798 million.
This profit would be realized and invested in bonds so
that the total value of stocks and bonds would be the
h~surance goal of $97.215 million. The institution
would then write $0.655 million of new 9-day con-
tracts.

The portfolio insurance strategy using futures can
be summarized as follows. Determine your insurance
goals for each period; these are the actual portfolio
values necessary to end up with the portfolio worth at
least the desired floor. Then invest all your initial
money in stocks and write the appropriate number

~o Of course, the institution will not buy back 0.422 futures then
sell 0.125 futures. Instead, it will simply buy the difference, or 0.297
futures, leaving the remaining 0.125 short futures on the books.

of futures contracts. On each day realize enough profit
or loss on your futures contract to achieve your
insurance goal, investing all realized futures profits in
bonds (or borrowing to finance realized futures loss-
es). At the end of the 10-day period you will have the
outcomes you selected when you undertook the port-
folio insurance.

Stock Price Dynamics and Portfolio Ins~,rance

Following the Crash of 1987, portfolio insurance
became unfashionable, for two fundamental reasons.
First, the dynamic interactions between portfolio in-
surance and stock prices suggested to some that
portfolio insurance contributed to the magnitude of
the Crash. This view was most forcefully presented in
the Brady Commission’s 1988 analysis of that event
(Brady 1989). Second, institutions that had bought
portfolio insurance strategies found that they were not
protected from the short, but violent, free fall in stock
prices.

The first criticism, that portfolio insurance mag-
nifies stock price movements, is demonstrated in
Table 5. A glance across any row (or down any
column) shows that as stock prices increase (decrease),
the portfolio insurer will buy more (fewer) shares. The
reason for this "buy high-sell low" feature of portfolio
insurance is that the need for insurance is inversely
related to the stock price. An increase in stock prices
reduces the likelihood that the floor will be reached,
hence requiring that less money be put into riskless
bonds and a correspondingly greater nulnber of
shares held. If, on the other hand, prices have been
falling, the likelihood that the final result will exceed
the floor is high, and the portfolio must be more
heavily weighted with bonds to ensure that the floor
will not be broken.

The use of futures markets as a substitute for the
spot market will not eliminate the unfortunate market
dynamics of portfolio insurance. While Table 6 sug-
gests that the dynamics are absent because there are
no transactions in stocks, the pressure remains but is
hidden from view. The strategy underlying Table 6
has futures contracts being bought (sold) after the
stock price increases (declines). As the futures price
increases in response to buying pressure in that mar-
ket, index arbitrageurs will find it advantageous to
buy in the spot market and sell futures short, thereby
transferring the pressure back to the spot market.

The second problem, failure to protect, reflected
less on the merits of portfolio insurance and more on
the specific circumstances of the Crash. Any insurance
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program rests on assumptions about the normal range
of outcomes an insurer will experience. Insurance
rests on actuarial tables that work well for a pool of
unrelated risks, but companies are exposed to losses
from extreme outcomes, especially those that create
correlated risks, like major earthquakes. Wind insur-
ance can also fail to protect when extreme storms
occur, such as Hurricane Andrew, rather than micro-
storms, like tornadoes.

Portfolio insurance failed during
the 1987 Crash because the

magnitude of the event was so
extreme, because trading halts

prevented execution of the
insurance program, and

because reported stock prices
gave an incorrect signal about

the state of the markets.

The Crash of ’87 was an extreme outcome, and we
should not be surprised that financial institutions did
not find the protection they sought. The heart of
portfolio insurance is the frequent adjustment of
hedge positions. During a crash, a portfolio insurer
would want to sell stocks and buy bonds. But, as
noted in a previous article in this Review (Fortune
1993), this could not be done during the 1987 Crash,
for a number of reasons. Trading in many stocks, as
well as trading in stock index futures, was suspended
for a significant portion of the time, and the backlog of
unexecuted orders for those stocks that were trading
was unusually long. A portfolio insurer could not
maintain his program in this environment.

A problem related to this is the existence of
"stale" prices in the cash market for stocks. During the
Crash the reported levels of stock prices and stock
indices exceeded the true level. This happened for two
reasons, trading halts and limit orders. During a halt,
the reported price is the price of the last trade, which
becomes more "stale" the longer the halt. Because
stock indices use these stale prices, halts give the
appearance of a smaller price decline and discourage
the sales that should be made to provide portfolio

insurance. Probably more important were limit orders.
If the specialist’s book is filled with limit buy orders, a
selling panic will not have its full effect on prices,
because the surge of sell orders will be matched with
the book, giving the appearance of a more gradual
price decline. Not until the limit orders are exhausted
will a free fall in prices show up.

Thus, portfolio insurance failed during the Crash
because the magnitude of the event was so extreme,
because trading halts prevented execution of the in-
surance program, and because reported stock prices
gave an incorrect signal about the state of the markets.

IlL Further Considerations

We have shown that "plain-vanilla" derivative
instruments like equity options, index options, and
index futures can be viewed as equivalent to a tradi-
tional portfolio of stocks and bonds. The analysis
focused on the market risks arising from derivatives
and abstracted from other types of risk. It also as-
sumed that the statistical properties of the price of the
underlying security are known. For example, the
binomial pricing model assumes that prices are bino-
mially distributed, while the Black-Scholes model as-
sumes a log-normal distribution. In this section we
address some of those loose ends.

The Limits of the Equivalence between
Derivatives and Traditional h,struments

The equivalence we have demonstrated applies to
a wide range of derivative products. For example, a
plain-vanilla interest rate szoap is equivalent to purchas-
ing a fixed-rate instrument and financing it with
floating-rate debt. The swap is designed so that it has
a zero net present value. The swap is equivalent to
buying a fixed-rate bond and financing it with a
floating-rate bond. The incentive to engage in a swap
is related to the comparative advantage arising from
the gap between what the two parties would pay on
the fixed-rate instrulnent and the gap on floating-rate
instruments. If one company (AAA) can borrow both
floating and fixed at lower rates than another (BBB),
AAA has an absolute advantage over BBB in credit
markets. Even so, AAA might have a comparative
advantage in the fixed-rate market, while BBB has a
comparative advantage in the floating-rate market.
Hence both AAA and BBB might gain from having
AAA borrow at a fixed rate and engage in a receive-
fixed swap with a floating-rate borrower like BBB.
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This effectively converts AAA’s fixed-rate liability to a
floating rate, and BBB’s floating-rate liability to a fixed
rate, both at more advantageous terms.11

To extend the metaphor, the notorious inverse
floater is equivalent to lending at a fixed rate and
borrowing a fraction or multiple of that notional value
at a floating rate. A complex variation, stepped inverse
bonds are equivalent to a series of forward contracts.

For some derivatives it is difficult
to establish an equivalence,

because no replicating portfolio,
or closed form solution,

can be found.

standard assumptions about the probability distribu-
tion of final payoffs do not apply. Typically, this
means that there is no precise replicating portfolio and
valuation must be done by numerical methods. An
example is a lookback option, for which the exercise
price depends upon the history of the underlying
security’s price. In one form of lookback option, the
Asian-style option, the strike price is the (arithmetic)
average price of the nnderlyiug security over the life
of the option. In this case the distribution of payoffs is
not normal even though the returns on the underlying
security might be normally distributed.13 Closed-form
solutions based on the normal distribution will not
apply, and numerical simulation methods are the only
alternative approach to valuation. Hence, we cannot
treat an Asian option as equivalent to a portfolio of
stocks and riskless bonds. We can only recognize the
fuzzy correspondence between the lookback option
and a portfolio.

An example is the stepped inverse bond issued by the
Federal National Mortgage Association (FNMA) and
bought by Orange County, California, in February of
1994.12 These bonds paid a rate of 7 percent for the first
three months, then paid 10 percent minus the three-
month LIBOR rate at each three-month interval until
1996 (this amounted to 5.1 percent in the first th’ree
months). In 1996 the terms changed to 11.25 percent
less three-month LIBOR until maturity in 1999. This
was equivalent to buying a FNMA bond due in 1996 at
10 percent and borrowing at LIBOR, for a net return of
5.1 percent in the first three months, while simulta-
neously engaging in a forward contract to buy a
three-year 11.25 percent FNMA bond in 1996 and to
sell a three-year floating rate note at three-month
LIBOR.

These derivatives have a property shared by all
derivatives that satisfy the equivalence property--
they have replicating portfolios ~vhich allow the deri-
vation of closed-form solutions for the derivative
price. A closed-form solution means that the price can
be expressed as a function of relevant variables and
parameters. For example, the Black-Scholes model
states that a European call option is equivalent to a
fractional share of the underlying security plus bor-
rowing a fractional share of the exercise price; this is a
closed-form solution.

However, for some derivatives it is difficult to
establish an equivalence, because no replicath~g port-
folio, or closed-form solution, can be found. This can
occur for several reasons. One reason might be that the

Basis Risk

Another reason for absence of a replicating port-
folio is transactions costs. These can make it expensive
to engage in the portfolio-option arbitrage which
allows a closed-form solution. Often this gives rise to
basis risk. The problem of basis risk arises when an
option or futures contract based on an index of secu-
rities is used to hedge a portfolio that is not precisely
mimicked by the derivative. For example, our finan-
cial institution’s portfolio h~surance scheme employed
stock index futures to adjust the effective portion of
the portfolio devoted to stocks. If the institution was
an index fund holding, say, the S&P 500 portfolio of

~ For example, if AAA can borrow at 10 percent fixed and
LIBOR + 1 percent floating, while BBB can borrow at 12 percent
fixed and LIBOR + 2 percent floating, then AAA has a comparative
advantage as a fixed-rate borrower. Suppose AAA borrows fixed at
10 percent and engages in a fixed-rate swap in which it pays LIBOR
+ 1.5 percent floath~g in exchange for 11 percent fixed. BBB, of
conrse, borrows floating at LIBOR + 2 percent and takes the other
side of the swap, paying 11 percent fixed and receiving LIBOR + 1.5
percent floating. The net effect is that AAA has a floating-rate
liability at LIBOR + 0.5 percent and BBB has a fixed-rate liability at
11.5 percent. Both parties are better off.

12 In a structtu’ed note, a government agency issues a bond
whose rate of ret~rn is set according to a specified relationship with
a short-term interest rate, with the payments reset at the interval of
the short rate. The relationship between the rate paid and the short
rate can be direct or inverse, fractional or multiple. By selling
offsetting structured notes, the agency’s obligation can be equivalent
to a fixed-rate bond.

~s An Asian call option based on the average price has the
payoff max(S - S~,,g, 0). Even though S might be log-normally
distributed, S~,,g is not. Indeed, S - S~,.g has no known distribntion.
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stocks, the use of an S&P 500 futures contract involves
no basis risk. But in most cases the stock portfolio
will differ in composition from the portfolio upon
which the futures contract is based. As a result, the
correlation between the derivative price and the value
of the stocks in the portfolio is imperfect.

Basis risk clearly means that hedges of the type
outlined above are imperfect. However, stocks have
been shown to have a significant common factor
(called the market factor) in their price movements.
Because idiosyncratic risks attached to specific stocks
can largely be diversified away, the major source of
price variation is the market factor. In short, funds do
not have to be index funds to be highly correlated with
stock market movements, and the higher this correla-
tion the smaller is the basis risk.

Counterparty Risk

Counterparty risk is the prospect that the coun-
terparty to a derivative transaction might default. For
example, the writer of a call option is obligated to
deliver shares in the event that the call is in-the-money
and the holder exercises it. If the writer reneges, and if
no insm’ance pool or other means is available to
enforce the contract, the value of the holder’s call is
reduced or disappears.

Counterparty risk is a relatively small problem in
the exchange-traded options and futures we have
focused on here. The reason is that the transaction is
not with a specific counterparty, but with a clearing
house. The functions of the clearing house are to
determine to which writer an exercised contract is
assigned, to receive payments for and make transmit-
tal of underlying securities, and to ensure that all
contracts are honored. Any default is with the clearing
house, which has adequate resources to meet the
obligations of the contract. The clearh~g house pro-
vides an extremely important function in the forma-
tion of actively traded markets for standardized con-
tracts, for it removes the specific names on the contract
from each party’s consideration. In the absence of the
clearing house, any buyer of an option contract, or
participant in a futures contract, would require de-
tailed information on the financial position of the
counterparty, a requirement that would inhibit use of
the instruments.

Counterparty risk is considerably more important
in the over-the-counter (OTC) markets for derivatives.
These dealer markets create custom-made contracts
between parties, which have less liquidity (that is,
they are more difficult to reverse) and for which no

guaranteeing agency is present to ensure payments.
Thus, the pricing of OTC products ranging from
plain-vanilla interest rate swaps to exotica like diff
swaps~4 involves counterparty risk, which affects the
value, or terms, of the derivative. Counterparty risk
can be reduced in a variety of ways, from compensa-
tory interest rates (in the form of a premium paid over
LIBOR or over Treasury bonds) through credit en-
hancements (for example, collateral) to netting agree-
ments between the parties. Recently, efforts have been
made to organize a clearing-house arrangement for
OTC derivatives, although none has been established
as of this writing.

IV. Summary and Conclusions

This article demonstrates that such silnple deriv-
atives as exchange-traded options can be easily under-
stood if one is just willing to spend some time at it.
Many, but not all, of the new derivatives are, in fact,
old instrulnents in new clothing. As such, they may
represent more complicated ways to speculate or to
hedge, but in most cases they can be understood as
equivalent to traditional instruments. Indeed, one
approach to evaluating the risk exposure of financial
instit~tions holding derivatives is to convert them to
their equivalence in more traditional financial instru-
ments.

In order to understand the equivalence between
many derivatives and traditional portfolios of stocks
and bonds, we first explain the technology of deriva-
tives. This is done for the simplest forms of deriva-
tives-plain-vanilla equity options, stock index op-
tions, and stock index futures. We show that these
derivatives are equivalent to an underlying portfolio
of stocks and bonds. Hence our subtitle "A Rose by
Any Other Name .... " This equivalence is illustrated
in several ways. We first demonstrate the equivalence
using a simple formal model of option price determi-
nation, the binomial option pricing model, in which
options premiums are directly derived from the prices
of stocks and bonds. Because the binomial model
serves as a first approximation to option premiums
described by more sophisticated theory (for example,
the Black-Scholes model), it is a particularly fruitful
starting point.

~4 A diff swap involves payment of a foreign interest rate by
one part}, in exchange for a U.S. interest rate by the other, all
payments in U.S. dollars. Hence, it is equivalent to borrowing at the
U.S. rate to buy foreign securities, combined with an exchange rate
guarantee.
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After discussing the pricing of stock options and
stock futures, and their equivalence to stocks and
bonds, we then turn the problem on its head and show
how stocks, bonds and futures can be used to mimic
options; that is, traditional stock-bond portfolios can
be used to construct "synthetic" options. Thus, in the
second section we focus on aspects of risk manage-
ment using synthetic options constructed by taking
positions in traditional instruments. Our particular
interest is in dynamic hedging, and in one of its more
interesting manifestations, portfolio insurance. We
point out why portfolio insurance seemed such a
promising strategy, and what led to its decline after
the Crash of 1987.

No metaphor precisely fits all circumstances, and
our analogy between traditional instruments and ex-
change-traded options does not apply to all derivative
securities. We discuss several circumstances in which
there is no replicating portfolio and, tlierefore, the
equivalence between a derivative and traditional in-
struments breaks down. Among tliese are basis risk,
counterparty risk, and discontinuities in the price of
the underlying security. In these cases, derivative
securities do introduce something new because they
do not precisely replicate the movements in prices of
traditional instruments. These situations are lnost of-
ten found in over-tlie-counter derivatives, thougli they
can also apply to exchange-traded derivatives.
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